RZ102 Galaxien-Beobachtung 

Auf der Jagd nach neuen Galaxien

Hunderte Millionen Sterne bevölkern unsere Galaxis und hunderte Millionen solcher Galaxien mit hunderten von Millionen Sternen sind jenseits Milchstraße im Universum zu entdecken. Die aktive Beobachtung dieser Galaxien dient dem Verständnis der Entstehung des Universums und damit auch unserer Galaxis und der Überprüfung physikalischer Theorien. Neben der reinen Katalogisieren dieser Galaxien ist aber vor allem die genaue Untersuchung ihrer Eigenschaften ein wichtiger Beitrag zur Astrophysik.

Dauer:
Aufnahme:

Helmut Dannerbauer
Helmut Dannerbauer

Helmut Dannerbauer ist der „Galaxienjäger“ beim Instituto Astrofisica de Canarias auf Teneriffa, er durchforstet das All nach Galaxien und entdeckt dabei komplett neue Systeme und untersucht bekannte Galaxien auf ihre Beschaffenheit.Wir sprechen über seine Arbeit, Vorgehensweise, Methoden und Werkzeuge.


Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Tim Pritlove
Hallo und herzlich willkommen zu Raumzeit, dem Podcast über Raumfahrt und andere kosmische Angelegenheiten, mein Name ist Tim Prettler und ich begrüße alle hier zu einer weiteren Ausgabe und äh auch diese ist äh im Rahmen meiner,Reise über die kanarischen Inseln entstanden und ähm ja, nachdem wir uns zuletzt äh noch einmal Exoplaneten genauer angeschaut haben,tauchen wir jetzt äh etwas tiefer in das Universum noch ein, ja, noch tiefer. Heute wollen wir uns nämlich unterhalten über die Beobachtung von Galaxien und dazu begrüße ich meinen Gesprächspartner. Helmut Dannhauer, hallo.Herzlich willkommen bei Raumzeit. Helmut, du bist genauso wie der Hans-Jörg Dick, äh auch beim,Astrophysico de Cannarias, also hier der lokalen und wahrscheinlich auch einzigen Space ähm ähm,Entität oder? Gibt's noch äh eigentlich eine andere außer dem IRC, die hier noch in irgendeiner Form einer Raumfahrt arbeitet?
Helmut Dannerbauer
Universität gibt's noch Leute aber die Universität ist auch mit uns.
Tim Pritlove
Dann, ne.
Helmut Dannerbauer
Richtig, aber genau astronomisch ist das sage ich mal das einzige Institut. Auf den Kanarischen Inseln.
Tim Pritlove
Ja du bist beobachtender,Astronom. Also du schreibst dir die äh Sachen ganz genau an, natürlich nicht äh mit dem bloßen Auge, sondern eben mit vielen Teleskopen.Teilweise denen, die hier auf den kanarischen Inseln platziert sind, aber auch anderen, da kommen ja noch zu. Mich würde natürlich jetzt erstmal interessieren, wie bist du überhauptäh hierher gekommen, auf die Kanaren beziehungsweise wie bist du denn überhaupt auf den Weg gekommen einen äh Astronom zu werden?
Helmut Dannerbauer
Physiker.
Tim Pritlove
Astrophysiker zu werden.
Helmut Dannerbauer
Genau, also wie ich ein kleines Kind war, hat mich eigentlich immer schon die Welt rum fasziniert, also Space Shuttle, das habe ich dann eben mitverfolgen können und.Mondlandung habe ich jetzt nicht mehr mitbekommen, aber ich habe natürlich über die Berichte darüber gelesen und das hat mich eigentlich immer fasziniert.Dann wie ich mir dann eben Gedanken gemacht habe, was ich studieren äh möchte. Eigentlich hatte ich die Idee, wie Informatik zu machen, aber irgendwie hat mich,also vor allem das Buch von Stephen Hawking eine Reise der Zeit, das hatte mir ein Kollege wie wir dann das Abitur gemacht haben, der hatte mir das geliehen,dann gelesen und das hat mich so fasziniert, dass ich mir die Frage gestellt habe, ob ich nicht doch ähm Astrophysiker werden sollte. Ich war dann auch äh vorm Studium in Südamerika unterwegs mit dem mit dem Rucksack.Dann vom Weiten die Teleskope gesehen, ich konnte die dann leider nicht ähm besuchen, aber,dann ist immer mehr in mir der Wunsch ähm ja wie soll ich sagen hat sich entwickelt, dass ich halt eben das probieren möchte aber in Deutschland ist es halt eben so also man macht da nicht äh gleich eine Ausbildung zum Astronom oder Astrophysiker. Man muss halt eben Physik studieren.Und.Im Hauptstudium kann man sich dann eben halt auf verschiedene Bereiche der Physik spezialisieren, zum Beispiel Halbleiter Physik und ich habe das dann eben auf der Astronomie-Astrophysik gemacht. Ich habe an der Ludwig Maximilian Universität von München studiert. Die hat eben auch einen sehr,ähm eine Abteilung in Astronomie hat, eben auch dann eben vor allem in München ist auch ein sehr bekannter, weltweit bekannter Standort in der Astrophysik,eben zum Beispiel die Eson, auch eben verschiedene Max-Planck-Institute. Und dann dachte ich halt eben schon, dass es dann vielleicht doch eine gute Umgebung für mich, dass ich.
Tim Pritlove
Ne?
Helmut Dannerbauer
Richtig, dass ich halt dann weil oft als Student sagt man ja als Student da bleibe ich nicht in meiner Heimatstadt, sondern gehe woanders hin, aber da dachte ich teilen in dem Falle wäre das jetzt vielleicht ähm doch ähm ratsamer dann in München zu bleiben.Und habe dann eben das Studium aufgenommen, Physik,und im Hauptstudium dann eben habe ich dann eben verschiedene hm astronomische Kurse eben belegt. Habe dann auch eben verschiedene Themen äh Gebiete auch kennengelernt und was mich dann eben auch fasziniert dabei halt eben Galaxien.Und ich habe dann eben auch äh während meines Studiums ähm meinen späteren Doktor Vater, den Herrn Professor Reinhard Genzel eben kennengelernt, der hat eben auch eine Vorlesung gehalten.
Tim Pritlove
Jüngst mit einem Nobelpreis ausgestattet wurde.
Helmut Dannerbauer
Genau richtig und es ging halt eben auch über Instrumentierung. Das war halt eben Teil davon des Studiums, sondern das hat man wirklich äh sehr gut gefallen, seine Vorlesung.Ich habe ihn dann einfach drauf angesprochen, ob's eine Möglichkeit gäbe, bei ihm eine Mastarbeit zu machen und er meinte dann, ich sollte mir mal danndie Webpage anschauen von seiner Arbeitsgruppe, was es so allesund es hat mich vom ersten Moment, hat mich einfach kollidieren, die Galaxien einfach fasziniert und es gab dann eben dann auch ein Projekt, das war verbunden mit Beobachtungen in Chile, die teilweise schon genommen worden sind mit einem vier Meter Teles,aber es gab dann eben auch noch äh Beobachtungen durchzuführen. Ich habe dann eben da meine Masterarbeit gemacht, also damals hat das ja noch Diplomarbeit geheißen.Das hat dann eben alles ganz gut geklappt und da war auch eben mein Wunsch, dass ich dann auch eben dort die Doktorwelt mache. Und dann habe ich halt,Zuerst in der Maßnahme habe ich halt eben Galaxien, ich sage mal so, im lokalen Universum beobachtet, also sie relativ nahe zu uns sind und in der Doktor Band ähm bin ich dann halt eben zum frühen Universum gesprungen.
Tim Pritlove
Und warum ging's dann bei der Doktorarbeit.
Helmut Dannerbauer
Bei der Doktorarbeit ging's darum eben auch,verschmelzende Galaxien zu beobachten, aber halt, wie gesagt, halt eben im im frühen Universum, die sind dann auch mit einem Instrument von der Max-Planck-Gesellschaft, von Institut für Radio-Eustromie, die sind halt eben,entdeckt worden. Das waren halt dann auch neue Galaxien. Im Rahmen meiner Doktorarbeit war der.
Tim Pritlove
Instrument ist das entdeckt.
Helmut Dannerbauer
Mit einem 30 Meter Teleskop im von Ayram das ist 'ne in Spanien in der Nähe von Granada das sind die eben entdeckt worden in einemin einer Durchmusterung, in einem Service und unsere oder meine Aufgabe, der Doktor war halt eben dann diese Galaxien zu charakterisieren, deren Eigenschaften ja zu studieren und auch eben vor allem die Entfernung von diesen Galaxien zu bestimmen.Hat es dann eben auch angefangen, dass ich dann eben nicht nur äh mich auf einen Wellendenkbereich ähm spezialisiert habe, also den Radiobereich, wo die äh entdeckt worden sind, sondern ich habe dann eben auch angefangenBeobachtungen im Optischen und auch im verroten Bereich durchzuführen. Und ich hatte eben auch das große Glück,dass ich halt dann eben auch selber die Beobachtung wirklich durchführen konnte. Ich konnte eben dann eben auch nach Chile fahren, nach Hawaii und eben mit den verschiedenen auch mit den größten Teleskopen, die es so gibt halt eben zu beobachten.
Tim Pritlove
Und jetzt bist du hier seit.
Helmut Dannerbauer
Seit 1. April 216 und ich bin hierher gekommen mit einem sogenannten Ramon äh Stipendium.Stipendium von der spanischen Regierung. Das gibt's halt eben in in verschiedenen Fächern,Es ist fünf Jahre angelegt. Also man kann halt eben auch wirklich seine eigene Wissenschaft äh durchführen. Man hat auch ein kleines,Starterpaket sage ich mal, von 40.000 Euro für Reisen und auch Equipment.Und die Idee ist halt eben dahinter auch von diesen äh Stipendium, dass es halt so eine ArtTrack ist, dass man eben danach dann wirklich eine feste Stelle in der Wissenschaft bekommt. Also ich habe davor in Österreich gearbeitet. Ich war eben schon über zehn Jahre PostdocUnd irgendwann sagtnormal, man will den nächsten Schritt machen und ich habe dann eben in einem in meiner Zeit in Wien schon gesagt, wenn das jetzt nicht mit meiner ähm mit einer Stelle klappt, wo es dann eben Aussichten gibt, halt eine feste Stelle zu bekommen.Dann lasse ich halt das Ganze, dann war's das halt eben, aber ich hatte eben das große Glück eben, dass es ähm Stipendium zu bekommen, das auch sehr kompetitiv ist.Dann sind wir halt mit der ganzen Familie halt hier nach Teneriffa gekommen und Gott sei Dank hat es auch eben alles gekla,und seit äh Dezember vergangenes Jahres bin ich auch äh Beamter hier am Institut.
Tim Pritlove
Also Ziel erreicht und äh nebenbei noch schönes Wetter äh im in der Dauerbespielung.
Helmut Dannerbauer
Ja, genau richtig. Also ich komme ja aus München und ich bin wirklich sehr heimatverbunden, aber was ich nicht so gerne mag, ist der Schnee und hier gibt's ja nur den Schnee, wenn man zum Tede hochfährt.
Tim Pritlove
Ja, oben aufm Vulkan, genau und den auch nur äh ab und zu mal.Ja du bist hier so ein bisschen die äh als Galaxien äh Jäger äh sozusagen bekannt und ähm.Das ist also der äh Fokus. Den Fokus wollen wir dann jetzt hier auch ähm mal ähm in Angriff nehmenEs gab schon mal eine ausführliche Sendung zu Galaxien und Kosmologie im weiteren äh Sinne. Das ist so ein schöner Überblick gewesen, wie manob da auch erstmal diese Begriffsklärung in den Kopf zu kriegen, die er vielleicht auch nicht unbedingt immer jedemklar ist, so wo endet ein so ein äh Sonnensystem, wo beginnt äh quasi die Galaxie, wo endet eine Galaxie, äh wie stehen mehrere Galaxien miteinander in Verbindung und auch äh,wie dunkle Energie.Dunkle Materie, alles das, was äh dazukommt, das gibt's in Raumzeit dreiundsechzig. Markus Brücken unterhalten habe. Heute wollen wir uns ein bisschen mehr äh konzentrieren auf die Galaxien als Zeuchen.Und ähm da ist ja eigentlich auch in den letzten Jahrzehnten eine ganze Menge passiert durch die Verbesserung der der Teleskope,natürlich durch Hable, aber eben auch viele andere Beobachtungsmethoden, die einfach immer besser schärfer, tiefer, weiter äh gucken konnten und vor allem durch äh auch das Auffächern der Beobachtungs ähmBandbreite, indem man halt einfach nicht nur im optischen Bereich äh das äh auch von unseren Augen wahrnehmbare Licht äh anschaut, sondern Radioastronomie, Infrarot, Astronomie, was alles noch mit ähdazukommt und wie sieht's hier auch in den letzten Sendungen schon mehrfach angeklungen ist und das spielt für dich ja auch eine Rolle, auch das James Web Teleskop wird gerade in diesem Bereich glaube ich,Ja dann scharren schon alle mit den Füßen. Du wahrscheinlich äh ganz besonders oder?
Helmut Dannerbauer
Ja, also ich war jetzt erstmal froh, wie viele meiner Kollegen, äh dass der Staat gut geklappt hat und da habe ich mir dann eben auch damals geschaut, es war der erste Weihnachtstag.Meinen Kindern zusammen angeschaut und es hat alles gut geklappt und habe dann auch eben immer wieder verfolgt, dass jetzt sage ich mal das Deployment von dem TSG gut klappt mit mit der Reise und vor allem was ja wirklich der spannende Moment war,dass es halt eben auch alles klappt mit den mit den Sonnensegeln, aber den eben auch ähm das Ausklappen des Teleskops und es sind ja viele Prozesse, was ich gelesen habe, ich glaube mehrere hundert, die wirklich.
Tim Pritlove
Über dreihundert.
Helmut Dannerbauer
Dreihundert, die wirklich Singlepoint Fehler waren. Also wenn's da schief geht ähm.
Tim Pritlove
Alles das gewesen, genau.
Helmut Dannerbauer
Richtig und das ist ja schon wirklich eine eine absolut ja bemerkenswerte Leistung, dass das alles so toll geklappt hat,und jetzt hoffen wir mal, dass dann eben auch die das sogenannte Commissioning der Instrumente alles gut klappt, also wird in den nächsten Wochen und Monaten werden dann eben die Instrumente getestet,und dann hoffentlich nach nach sechs Monaten, also ja im Sommer, dass wir dann eben die ersten wissenschaftlichen Daten halt äh nehmen von den verschiedenen Beobachtungsprogrammen.
Tim Pritlove
Ja, das waren alles,gute Nachrichten und ich glaube die beste Nachricht obendrauf war ja dann, dass insbesondere die Injection, also der eigentliche Launch, so gut funktioniert hat, dass man sich so dermaßen viel Spritz,hat, dass äh die Missionsdauer von 20 Jahren jetzt äh durchaus realistisch erscheint, davon konnte man ja nicht unbedingt ausgehen. Das macht natürlich nochmal einen Riesenunterschied.
Helmut Dannerbauer
Ja auf alle Fälle, also es hat ja immer geheißen, dass es jetzt erstmal fünf Jahre ist und bis Maximum zehn Jahre, aber,Ich hatte davor auch nichts großartiges äh mitbekommen, dass wirklich das wenn das alles tatsächlich so super klappt auch mit der Ariane-Rakete halt eben, wie die eben äh das Teleskop in den Umlauf bringt, dass man dann ähso viele Jahre gewinnen können. Ich habe vor paar Wochen habe ich mir ein Webinar angehört, angeschaut äh über James Web, da wurden halt ebenverschiedene wie soll ich sagen Verantwortliche von den verschiedenen Instrumenten und auch Prozesseneben Vorträge gehalten oder habe ich dann die eben das auch erfahren, dass das halt eben, wenn alles gut klappt, also äh ja bis zu zwanzig Jahre im im Orbit sein kann und das habe ich Base Teleskope ist ja auch schon 30 Jahre eben,im Ohrbett und ja das ist schon eine eine tolle Nachricht.
Tim Pritlove
Da macht sich das Geld dann doppelt und dreifach bezahlt und es ermöglicht natürlich auch ganz andere Beobachtungen, weil man natürlich am Anfang erstmal oft all das schaut, wo jetzt alle denken so, oh, da müssen wir unbedingt mal hingucken und dann ist halt vielleicht auch noch Zeit äh auf all das zu schauen, wo man dann äh später eigentlich erst draufgekommen ist.Ja, die Beobachtung von äh Galaxien ähm.Warum ist das so interessant, abgesehen davon, dass dich das interessiert? Also gibt es da sozusagenspezifische Lehren, die man jetzt konkret aus der Beobachtung und dem Wesen von äh Galaxien äh im Gesamtverständnis des Kosmos äh ziehen kann oder ist es halt vor allem einfach äh eine,eine komplexe singuläre Disziplin, die halt auch durch werden muss.
Helmut Dannerbauer
Wir möchten halt eben äh verstehen, wie die Galaxien sich gebildet, unentwickeln.Zum Beispiel unsere eigene Galaxie, das haben wir jetzt eben in den letzten Jahren, ähm also auch festgestellt, dass eine sogenannte Balkenspiralgalaxie.Wir möchten die Vergangenheit schauen, möchten verstehen, wie sich die Galaxien äh so entwickelt haben, wie wir sie jetzt im lokalen Universum beobachten. Und was ich ja eben habe vor fast 100 Jahren eben ja gezeigt,ist, esja nicht nur Spiralgalaxie wie unsere Milchstraße, sondern es gibt eben auch elektrische Galaxien. Und man will halt eben verstehen, warum gibt es zwei Typen von Galaxien? Es gibt da auch noch sogenannte irreguläre Galaxien.Und deshalb ist es eben auch wichtig ähm zurück in die Vergangenheit zu gucken und zu schauen, wie die Galaxien früher ausgeschaut haben.Und es gibt auch ähm bei den äh Entwicklungen von Galaxien gibt's eben auch das Modell mit dem hierarchischen Merching.Eben von kleineren Blöcken, Komponenten, immer größere Galaxien stehen.
Tim Pritlove
Typen von Galaxien muss man denn so auseinanderhalten? Also wie äh wie funktioniert da die Klassifikation derzeit schon? Also klar, Balken, Spiralgalaxie, also Spiralgalaxie. Ich glaube, das ist ja auch so ein bisschen die Spiralgalaxie ist ja so so die prototypische,Form, die man, glaube ich, so primär mit Galaxien auch erstmal,verbindet äh vermutlich deshalb, weil die erste Galaxy und lange Zeit auch einzige Galaxie, die man überhaupt so richtig sehen konnte, die Andromeda Galaxies, die ja quasinicht die nächste, aber die nächst größte Galaxie ist oder ist es sogar die allernächste. Ich bin mir grade nicht ganz sicher, dass die kleinen Magelanschen Wolken und so weiter, ne, die sind.
Helmut Dannerbauer
Genau, das wollte ich sagen, richtig, das sind ja irreguläre Galaxien. Genau, die margianischen Wolke, die große und die kleine Wolke. Das.
Tim Pritlove
Brauchte man erstmal eine Weile bis man verstanden hat, dass es eine Galaxie. Das war ja auch bei Andromeda äh so, aber die ist dann sozusagen in ihrer ganzen Erscheinung. Es ist ja eine reine Spiralgalaxie oder ist es auch eine Balkenspiralgalaxie?
Helmut Dannerbauer
Soweit ich weiß, das ist eine Spiralgalaxie.
Tim Pritlove
Genau, so das ist äh also sozusagen so dieses typische Bild und man ging, glaube ich, auch lange Zeit davon aus, dass die Milchstraße dann genauso aussieht, weil so sehen Galaxien eben aus.
Helmut Dannerbauer
Richtigwir können ja leider keine Sonde hochschicken, die dann Foto von von der Milchstraße von oben macht, aber man hat halt eben durch Vermessungen der Bewegung von Sternen oder wie halt die Sterne eben positioniert sind am Himmel, hat man halt eben dann in den letzten Jahren etwa 20 Jahren eben rausgefunden, dass es halt eben keineEs ist natürlich eine Spiralgalaxie, aber es gibt halt eben noch ein ein Balken äh in der Galaxy erleben.
Tim Pritlove
Ist schon klar, worum's diesen Balken gibt.
Helmut Dannerbauer
Also ich weiß, dass jetzt äh nicht so ganz genau, weil ich an dem Themengebiet äh nicht dran arbeite.
Tim Pritlove
Mhm. Okay. Aber das sind auf jeden Fall, nachdem man dann eben immer weiter äh schauen konnte, mehr Galaxien äh gefunden hat, mittlerweile ja weiß nicht wie viele Galaxien mittlerweile katografiert sind. Ist ja irgendwie eine Größenordnung, Millionen.
Helmut Dannerbauer
Ja mindestens 100 es gibt mindestens 100 Milliarden Galaxien.
Tim Pritlove
Ja. Okay. Die auch schon alle eine Zahl haben oder ist es die Schätzung, wie viel es gibt vermutlich.
Helmut Dannerbauer
Ja, das das ist das ist eine Schätzung, wie viel es ungefähr gibt.
Tim Pritlove
Okay, gut und ähm wie stellt sich das so dar, wie normal ist so eine Balkenspiralgalaxie, wie normal ist, sondern Spiralgalaxie ist das so, das, was man meistens findet oder sind das auch nur zwei oder vieren?
Helmut Dannerbauer
Nee, also im im lokalen Universum findet man schon der Großteil der Galaxien sind halt eben Spiralgalaxien, also reine Spiralgalaxien und halt eben dann äh Balkenspiralegalaxien.Halt dann eben immer weiter in der Vergangenheit äh schaut, ähm dann entdeckt man halt eben.Immer mehr Galaxien eben nicht so wie eine Spiralgalaxie ausschauen, sondern eben auch irregulär sind oder nur eine reine Scheibe und keine Struktur haben, wie sie wie wir das halt eben in unsere Galaxy zum Beispiel sehen.
Tim Pritlove
Mhm. Das heißt, man könnte annehmen, dass eine Spiralgalaxie zwar sehr verbreitet ist, aber eigentlich erst so die zweite oder dritte Stufe ist, nachdem sich sehr viele Prozesse äh erst haben, entwickeln können.
Helmut Dannerbauer
Ja, das kann man so sagen.
Tim Pritlove
Mhm. Wie zum Beispiel Kollisionen, aber nicht unbedingt nur Kollision.
Helmut Dannerbauer
Ja also äh Kollision ist zum Beispiel schon ein wichtiger Treiber von von der Entwicklung von Galaxien, also zum Beispiel,eines von den Modellen, was man eben kennt ist oder von den Beobachtungen eben auch abgeleitet hat, ist dass man dann eben zum Beispiel zwei Spiralgalaxien hat.Eben dann eben auch die Verbindung mit elektrischen Galaxien. Also man hat zwei Spiralgalaxien,und die kollidieren die verschmelzen dann miteinander und die sollten ungefähr etwa die gleiche Größe, die gleiche Masse haben und danach bildet sich halt dann eben eine elektrische Galaxie daraus.Was dann eben im Laufe der Zeit passieren kann, ist mit dieser lipischen Galaxien, dass die Gas äh akretiert von der Umgebung und daraus bildet sich dann wieder eine Scheibe.Oder auch auch Spiralen und dann später kann diese Galaxie mit einer anderen Scheiben oder Spiralgalaxie mit dann miteinander zusammenstoßen, bildet sich wieder eine elektrische Galaxie.
Tim Pritlove
Okay, also es ist gar nicht so ein Endzustand, sondern das kann sich eigentlich permanent immer wieder durch äh tauschen über die Zeit.
Helmut Dannerbauer
Ja genau richtig, also zum Beispiel auch mit unserer eigenen äh Galaxie. Da gibt's ja auch äh sage ich mal schlechte Nachrichten. Ich glaube eins, zwei Milliarden Jahren gibt's da auch einen Zusammenstoß mit der Andromeda.
Tim Pritlove
Andromeda, genau. Wobei Zusammenstoß muss man sich nicht so vorstellen, dass dann irgendwie alle Sonnen aufeinander knallen und irgendwie äh explodiert, sondern da berührt sich wahrscheinlich gar nichts.
Helmut Dannerbauer
Ja genau, das hatte ich gerade im Kopf. Ich habe da mal ein Beispiel gelesen gehabt,klar denkt man vielleicht im ersten Moment, dass da die Sterne dann miteinander zusammenstoßen wie die Planeten und und und wie auch immer, aber ich habe gelesen jetzt beim zum Beispiel Zusammenstoß von der Milchstraße und der Spiralgalaxie ist die Wahrscheinlichkeit,dass zwei Sterne zusammenstoßen ist, als wenn man zwei Tennisbälle in Deutschland irgendwo hinlegen würde.
Tim Pritlove
An dieselbe Stelle.
Helmut Dannerbauer
Irgendwo halt den also die Wahrscheinlichkeit, dass die zwei Tennis besser an der gleichen Stelle sind, die gehen ja gegen null, sage ich mal.
Tim Pritlove
Ja, Space ist big. Das äh kann man immer wieder daraus äh ablesen,Okay, das ist also grundsätzlich, wenn man jetzt in die Beobachtung macht, man hat also entweder diese olympischen Galaxid oder man hat,Spiralgalaxien in der ein oder anderen Ausprägung mit oder ohne Balken äh und dann äh hier und da auch mal irgendwas, was dann beiden Beschreibungen nicht wirklich entspricht, aber irgendwie,Nur ein heilloses Durcheinander ist. Kann man das so in etwa zusammenfassen.
Helmut Dannerbauer
Ja so also vor allem eben im frühen Universum. Also es gibt dann eben Galaxien wenn die dann zusammenstoßen auch hatte. Die haben dann zum Beispiel auch Gezeitenschweife. Das kann man eben beobachten oder halt man man kann in die.
Tim Pritlove
Ein Gezeitenschweif?
Helmut Dannerbauer
Also wie gesagt, man hat äh zwei Galaxien und die interagieren ja über die Gravitationskraft,und ähm wie gesagt, die verschmelzen ja miteinander und durch die Gravitationskraft werden halt eben in die Stirn und das Gas sage ich mal auseinandergerissen und dadurch entstehen halt eben dann die sogenannten Gezeitenschweife.
Tim Pritlove
Also Gezeiten im Sinne das Spiel der Kräfte.
Helmut Dannerbauer
Ja genau richtig, die Gezeitenkräfte richten.Dann kann man halt eben schön beim beim manchen Galaxieren zum Beispiel eseine Galaxie, die nennt sich NGC 40, achtunddreißig neununddreißig. Das ist die sogenannte Antenne Galaxie. Das sind halt eben auch zwei ähm Spiralscheibengalaxie miteinander zusammengestoßen und da gibt's ja wirklich,Bilder, wo man halt dann eben zwei Gezeitenschweife sieht. Die schauen halt dann so wie eine Antenne von so einem Insekt aus. Aber man sieht halt dann eben auch noch den Kern von den Galaxien. Man sieht auch noch so ein bisschen das blaue Licht von den jungen Sternen und inin dem Zentrum von den zwei ehemaligen äh Galaxien sind wir halt dann eben auch äh die Röhrensterne, die halt im in der sogenannten Verdickung in dem Ball steht eben auch sind, also,Galaxien, die haben wir vor allem eben auch äh nur alte Sterne, dass halt eben vielleicht auch zu betonen, also Spiralgalaxien da rotieren ja die Sterne.Um das Zentrum rum, in einer elektrischen Galaxie ist es halt eben äh nicht der Fall.Da gibt's halt ist halt einfach ein olympischer Körper, der kann eben verschiedene Elektrizitäten haben. Da werden ebenGalaxien auch klassifiziert nach der gewissen Elektrizität. Und dann gibt's, sage ich mal, ein Zwischending zwischen äptischen Galaxien und und Spiralgalaxien, das sogenannten S null Galaxien.Ach, weiß ich gar nicht, wie das jetzt auf äh auf Deutsch heißt.
Tim Pritlove
Saß er auf Englisch.
Helmut Dannerbauer
Ich glaube GalaxienDie haben halt praktisch den Ball und haben auch noch eine gewisse ähm Art von Scheibe, aber haben halt noch keine Spiralstruktur und die sind halt eben wie gesagtso ein so ein Zwischen äh Schritt zwischen elektrischer und und und den Spiralgalaxien und vielleicht auch das Interessante ja vielleicht zu erwähnen istAlso Veapel eben auch das äh Modell halt eben erstellt hat ist, dann gibt's halt eben die Early-Type Galaxys, das sind halt eben die elektrischen Galaxien, da gibt's die Late-Tech Galaxien, das sind halt eben dieSpiralgalaxien, aber wir haben halt eben auch jetzt rausgefunden, dass ich halt eben auch aus Zusammenstößen von Spiralscheibengalaxien halt eben da eine Lippischegalaxien, also eigentlich die Late kommen vor den.
Tim Pritlove
Also es ist so permanentes, galaktisches äh Billard, nur dass es eigentlich selten klack macht und äh permanent ändern sich ähm die Strukturen dieser äh Galaxien nichts nichts nichts bleibt äh äh wie es ist. Umso interessanterist es ja dann in die äh Zeit äh zu schauen. Mich würde jetzt vielleicht erstmal deineArbeitsmethoden interessieren. Also was ist sozusagen das das Rüstzeug, womit äh arbeitet man jetzt als beobachtender Astronom, wenn man sich die äh Galaxien anschaut,Klar, erstmal braucht man Gerät so, aber dann muss man ja auch mit den Daten noch irgendwas machen. Also welche,Teleskope, welche Instrumente kommen jetzt deiner Arbeit äh konkret zum Einsatz?
Helmut Dannerbauer
Also um halt eben die Entwicklung von Galaxien,gut verstehen zu können, ist es halt mittlerweile sehr wichtig, einen sogenannten äh zu machen, also eben in verschiedenen Wellenlängen zu beobachten, also wie ich halt eben vor 20 Jahren mit meiner Doktorwelt angefangen. Da war doch eher noch der,Astromina Infrarot, wie du erwähnt hattest oder auch Radio Astromie und Röntgen-Astromie.Ist es halt eben wirklich notwendig, um halt die Galaxien gut zu verstehen, dass man halt eben verschiedene Wellenlängenbereich eben abdeckt, um halt eben dann verschiedene Prozesse miteinander verbinden zu können und auch wirklich äh zu verstehen auch interpretieren zu können.In meiner Arbeit halt eben, also hier in in Teneriffa oder auf La Palma haben wir eben das Grandikanteleskop, das ist ja das größte optische Telesko,der Welt verschiedene hexagonale Spiegel, die halt eben zu so einem größeren Spiegel, ich glaube zehn Komma vier Meter dann ähm zusammengefügt worden sind, also ich verwende zum Beispiel auch eben für meine Arbeiten eben das Grande Cantelesco, weil ebenBeobachtungenDarüber hinaus äh verwende ich dann auch zum Beispiel auf der spanischen Halbinsel des ähm Ayran ähdreißig Meter Teleskop, das ist ein Radioteleskop.Was halt dann eben auch vor allem also kalten Staub beobachten kann, eben auch äh molekularen Wasserstoff,auch wichtig äh zu erwähnen aus molekularen Wasserstoff entstehen dann eben erst die Sterne.
Tim Pritlove
Äh welche Frequenzbereich schaut sich also für welchen Frequenzbereich ist das Teleskop gemacht, dass es das tun kann?
Helmut Dannerbauer
Dieses 30 Meter Teleskop in bei beobachtet zwischen 80 Gigahertz bis zu 250 Gigahertz, also etwa drei Millimeter bis ähm ein Millimeter.Es gibt halt eben eine eine sehr wichtige Linie. Das ist ähm Kapern äh Monoxid.Das ist ja, kommt er auch an den Abgasen von den Autos rauf? Also hier ist es ein bisschen giftig aber für uns Astronomen ist es ein sehr wichtiger, hm wie soll ich sagen, sehr wichtig ist Tool, eben um halt eben rauszufinden, wo zum BeispielGasreservoires äh sind, wo dann eben auch ähm Sterne entstehen.Da verwenden. Man kann halt eben molekularen Wasserstoff halt eben aufgrund seiner physikalischen Eigenschaften jetzt im Radiobereich nicht direkt beobachten.Man macht das halt dann eben indirekt eben über Kapern äh Monoxid.Und genau und die Linie, die ist halt eben bei 150 Gigahertz, also das ist so aus eine der wichtigsten Liene, ist halt der Übergang eins zu null,und klar mit der Rotverschiebungist es dann halt dann eben verschiedenen Frequenzbereich und dann beobachtet man halt eben, sage ich mal, wenn man jetzt bei 150 Gigahertz beobachtet, aber es ist halt dann eine eine andere Rotverschiebung dann beobachtet man dann auch eine eine andere Linie zum Beispiel. Also wenn das jetzt zum Beispiel Rotverschiebung zwei ist,Würde man in diesem Bereich bei etwa hundert Gigabs nicht mehr die eins nach null, sondern die drei nach zwei Linie B.
Tim Pritlove
Ein bisschen zu äh dekodieren. Also wir reden ja jetzt von hier von von äh der äh Spektroskopie, das heißt, man man schaut sich das Licht der Sterne äh an oder in dem Fall der ganzen äh äh Galaxie und bricht es halt in seinen SpektralenBestandteile auf, aber dazu muss man eben auch einen entsprechenden Quellfrequenzbereich überhaupt erst mal äh anschauen, um dann eben,speziellen Marker zu sehen, die eben ausgelöst werden, wenn dieses Licht eben durch die Stoffe, nachdem man sucht, äh,naja, wenn man sich das Licht von beliebigen Sternen anschaut, kann man halt sagen, okay, alles klar, da ist jetzt irgendwie so viel Helium und so viel Wasserstoff und äh alles dabei. Wenn man jetzt nur sozusagen ins ins kalte Nichts äh schaut und so nach Stäuben, also wirklich so geringsten Anteilen äh blickt, dann muss man eben sehr genau äh hinschauen, dass es jetzt sozusagen eine dieser Methoden, die man mitdiesem Teleskop machen kann.
Helmut Dannerbauer
Genau, zum Beispiel, das ist halt eben ein sogenanntes Single des Teleskop,Und was sage ich mal der Nachteil von von diesen ähm äh Single Distiliskoben im Radiobereich ist ja, dass er die Auflösung, die hängt halt eben von der Wellenlänge ab.Hängt er natürlich auch von der Größe vom Teleskoper, vom Durchmesser, eben auch von der Wellenlänge. Und Oma,dann eben auch Beobachtungen im Radiobereich mit denen im optischen Einbruch, wie zum Beispiel vom HPS Base Teleskop miteinander zu vergleichen. Wäre es sehr wünschenswert, dass man dann auch eineähnliche, räumliche Auflösung erreicht.Dazu braucht man dann eben ist der nächste Schritt dann interferometer zu verwenden, sogenannte Radio-Änter-Pherometer. Da gibt's dann eben auch ja zum Beispiel von von von Iram,eben auch in den französischen Alpen Mainz, das nennt sich,aber ein weiteres ist jetzt im Moment des Leistungsstärkes, ist Alma in Chile auf etwa 5000 Meter Höhe.Das verwende ich halt eben auch äh für meine Arbeiten und ähm die Antennen, die sind halt eben weit genug auseinander, dass man halt dann eben eine Auflösung erreichen kann, die halt, wie gesagt, dann ähnlich ist, was man im Optischen erreichen kann.
Tim Pritlove
Alma ist das Atacama Larsch millimeter Submilimeter are, also ganz viele äh kleine Teleskope, die da oben auf der Hochebene in der Atacama-Wüste äh verteilt sind und äh wo's ganz schwierig ist, da hinzukommen.
Helmut Dannerbauer
Ja genau richtig,das Glück, ich war schon mal dort naja, wir erwarten eine Konferenz in Chile. Zweitausendelf war das glaube ich und dann gab's halt eben noch die Möglichkeit, äh dass man halt dann eben noch ähm das Ziel ist grob besuchen kann und,sogar zweimal an dem an dem Teleskop. Dort hatten das erste Mal halt eben im Rahmen dieser Konferenzzuerst ungefähr 3000 Meter Höhe. Da hat man dann vorher noch geguckt, ob da auch medizinisch alles alles okay ist.Dann sind wir halt dann eben hochgefahren auf 5000 Meter Höhe und ja ich war wirklich sehr nah an den Antennen, also ich konnte es jetzt nicht berühren, aber fast so.
Tim Pritlove
Sauerstoffmaske.
Helmut Dannerbauer
Also nee, oben waren wir ohne. Also man kann schon noch ähm.
Tim Pritlove
Arschloch atmen.
Helmut Dannerbauer
Man kann rumlaufen, also,aber man muss halt eben aufpassen und ich kann mich auch erinnern, dass dann einer von den Konferenzteilnehmern der hatte da ein bisschen zu kämpfen, aber es kommt halt eben im leider leider vor und das hat auch nicht unbedingt was zu tun, ob man Leistungssportler ist oder nichtDas war halt eben die erste Gelegenheit und dann im Rahmen meiner Forschungsarbeiten bevor ich nach Wien gegangen war ich war ich in Frankreich,und habe dann eben Beobachtungen einen Antrag gestellt, äh sogenannten Apex Teleskop. Das ist Arterkama Parsfinder-Experiment, das ist ein Teleskop, das wird,von der Max-Planck-Gesellschaft. Ähm wie soll ich sagen, ja geleitet, geführt.Und da habe ich halt im Antrag gestellt, da wurde eben auch akzeptiert und das äh spannend war es. Man durfte halt wirklich tatsächlich beobachten durchführen und ich habe tatsächlich auf 5000 Meter Höhe Beobachtungen durchgeführt.Das war dann eben einige Monate später und davor mussten wir medizinische Untersuchungen machen. Ich war eben damals in Frankreich. Wir waren dann auch an so einem spezialisierten äh Institut. Da waren halt vor allem auch Bergsteiger dorten.Bin dann auch Radel gefahren auf der Höhe von Mont Blanc,hat alles gut geklappt. Wir hatten an unser Zertifikat und mit diesem Zertifikat und mit dieser Untersuchung, mit der Bestande untersuchen, konnten wir dann eben auch ähm zum Teleskop äh fahren.Ich war daneben mehrere Beobachtungs ähm Tage, wir sind dann früh immer von Sankt Pedro, der Art der Saison auf 22500 Meter Höhe ist es.
Tim Pritlove
Der letzte Ort, ne? So und.
Helmut Dannerbauer
Ja, genau richtig. Sind wir dann immer hochgefahren mitm mitm Fahrzeug eben von von den Kollegen,ungefähr, wenn ich mich äh rechts entsinne, eine Stunde dauert es etwa und dann waren wir eben, dann hat man eben tagsüber beobachtet. Wir waren natürlich dann in dem Container drin und der Container hat natürlich dann auch einen Sauerstoffgehalt, so wie man das halt eben gewöhnt ist, also,auf null oder 2000 Meter oder wie auch immer.Aber es gab eben richtig gesagte Sauerstoffmasken und auch andere Sachen wie Schokolade oder so.Ja zum Beispiel wie ich noch dunkel daran erinnern kann äh irgendwie Schokolade kann auch kurz ähfristig mal helfen.
Tim Pritlove
Ah, okay.
Helmut Dannerbauer
Genau und was halt eben auch spannend war.
Tim Pritlove
Auch nachts da oben?
Helmut Dannerbauer
Nee, nachts nicht. Also wir sind dann, haben im praktischen tagsüber beobachtet, weil das war halt eben so, mein astronomisches Objekt, das war eben nur tagsüber beobachtbar. Aber im Radiobereich kann man eben auch tagsüberweil es halt eben keine starke Quelle gibt. Also im Optischen kann man halt deshalb bei uns nicht beobachten tagsüber, weil's halt eben die Sonne gibt. Aber wie gesagt, im Radiobereich gibt's halt,kein Objekt, was halt äh super hell ist und deswegen kann man ja eben auch tagsüber beobachten, weil der Radiohimmel schaut halt eben ganz anders aus, eben als der der optische Himmel.
Tim Pritlove
Klar. Aber wenn man aber nachts Wasser dann in Sankt Pedro, ich meine da dürfte ja immer noch ganz ordentlich Himmel zu sehen sein, also.
Helmut Dannerbauer
Ja, nee, also der Himmel ist schon.
Tim Pritlove
Den Galaxien da nochmal ein bisschen näher als sonst?
Helmut Dannerbauer
Nee, also das das sind schon einzigartige Momente, wenn wenn man wirklich die Milchstraße sieht und auch wenn man Glück hat eben hängt von der Jahreszeit ab, wenn man dann eben auch die magianischen Wolken sehr toll sieht, das ist schon beeindruckend. Ich.
Tim Pritlove
Bloßen Auge.
Helmut Dannerbauer
Ja ja und ich kann mich auch erinnern, wie ich dann auch bei der mit dem nein nicht, nee, es war nicht ein paar andere, es war einwerde ich nie vergessen. Wir haben auch abends eben beobachtet und wenn man da mal, sage ich mal, seinen Rundgang gemacht hat, um frische Luft zu bekommen und,vor allem wenn dann eben auch der Mond nicht da war, dann war's dann nochmal dunkler und wenn man da so die wie gemahlen die Milchstraße sieht, das das war schon ziemlich beeindruckend, das war schon sind schon Momente, die man einfach nicht mehr vergisst.Und ja richtig und vielleicht nochmal zurückkommen zu den Beobachtungen halt eben. Also wir haben halt eben tagsüber beobachtet,Ab und zu war's halt dann doch ähm musste man dann doch äh sage ich mal weit genau die Geräte, die man verwenden müssen, ja eben kälter sein als eben diese Objekte, die man beobachtet, die Objekte, die wir beobachten, haben Temperaturen von zwanzig, dreißig, 40 Kelvin.Also minus zwei, ja, minus zweihundertdreißig, Minus.Grad Celsius und deswegen müssen müssen halt die Instrumente, die mit dem flüssigen Helium eben gekühlt werdenalle zwei Tage so, wenn ich mich noch recht entsinne, musste das halt eben auch gewechselt werden. Da habe ich dann auch mitgeholfen und das war halt dann schon später Nachmittag, früher Abend. Da war's dann schon relativ kühl.Werde ich nie vergessen und dann sind wir halt eben auch runtergefahren und beim Runterfahren muss man auch ein bisschen aufpassen, weil's da eben auch äh wilde Eseln gibt,damit ja richtig, es sind dann natürlich auch auf der Straße und so da passiert da nichts, sondern dann sind wir da wieder runtergefahren und dann,haben wir halt es war wirklich ein muss ich sagen beeindruckendes Erlebnis, das ich ja eben auch auf dieser Höhe halt beobachten konnte. Es war werde ich nie vergessen.
Tim Pritlove
So, aber das ist ja noch nicht das ganze Instrumentarium, was äh bei dir zum Einsatz kommt. Welche anderen äh Teleskope und Methoden müssen wir denn noch ins Feld führen?
Helmut Dannerbauer
Also ich denke.Mit den Teleskopen sind wir fast abgeschlossen, also was ist jetzt ein neues Teleskop gibt, was halt eben vorher schon erwähnt hast, weil du schon mal drüber gesprochen hast ja eben das James Webspace Telesko.Habe ich ja eben auch äh Glück gehabt jetzt in der ersten Runde. Nennt sich das bei uns Astronomen,Beobachtungsantrag gestellt, also in dem Falle wollte ich einen sogenannten Galaxienhaufen, der in Entstehung ist, also ich nenne Galaxienhaufen auch immer Städte von Galaxien.Der halt eben in in Construction ist, den wollte ich ganz gerne beobachten und habe da eben ein Beobachtungsantrag gestellt zusammen mit Kollegen aus Japan,Der wurde dann bewilligt und jetzt warte ich halt eben drauf, dass dann eben alles gut klappt und dass dann irgendwann mal äh die Daten kommen.
Tim Pritlove
Wann würde dann diese Beobachtung stattfinden, wenn das jetzt so alles halbwegs nach Plan läuft?
Helmut Dannerbauer
Ja, das ist noch nicht ganz klar, also die beobachten, die sollen ja jeden soweit zum Sommer beginnen, also sie hat dann nicht nur Cycle One, sondern ist natürlich auch so die verschiedenen Teams, die die Instrumente gebaut haben für das James Webspace Teleskop.Die werden, sage ich mal, mit Beobachtungszeit äh bezahlt. Das nennt sich Garantie Time,die verschiedenen Wissenschaftsteam haben dann schon Beobachtungsprogramme vorgeschlagen, die dann eben auch sage ich mal äh bewilligt worden sind innerhalb des Teams und natürlich auch gecheckt worden sind, dassdurchführbar sind. Die werden dann auch äh parallel dazu beobachtet.Und es kann also es kann sein, dass es im ersten Jahr beobachtet wird unser Projekt aber auch ein bisschen später, aber wir werden das so um den April rum erfahren, wann wir dann tatsächlich mit unseren Datenkönnen, weil was die auch beim Champs Web eben gemacht haben ist, also die haben ein bisschen mehrProjekte wie soll ich sagen, also akzeptiert, als es eigentlich Beobachtungszeit im ersten Jahr gibt, aber um halt eben flexibel zu sein mit den verschiedenen Instrumenten und auch eben was was halt gerade am Himmel beobachtbar ist.
Tim Pritlove
Teleskop ist ja jetzt so ein super Infrarot äh Empfänger also nochmal sehr viel kälter da draußen äh am La Grange Punkt.Äh zwei ich glaube das eigentliche Messinstrument wird auch nur noch auf wenige Kelvin runter äh gekühlt, also es ist wirklichkalt und wir sind in der Lage sozusagen auch noch so das letzte Photon, was wo du irgendwoher anfliegt zu äh erkennen und das ist ja auch Sinn der ganzen Sache, denn man will ja,weit in die Vergangenheit schauen. Das ist natürlich jetzt gerade für die Galaxienentstehung das Ding, oder? Also ich meine, worauf schaust du denn,also wie tief die Vergangenheit blickst du mit diesem Galaxienhaufen, wie weit geht das zurück? Weiß man das jetzt überhaupt schon.
Helmut Dannerbauer
Ja ja also zum Beispiel den Galaxienhaufen, den den wir beobachten, der nennt sich das sogenannte Spider-Wap äh Bruttocluster. Der der Spinnennetze Galaxienhaufen, Brutto Bruttohaufen.Der ist ungefähr also das Licht braucht zu uns etwa 10 Milliarden Jahre.
Tim Pritlove
Also wir sehen ihn sozusagen in einem Zustand, wie er vor zehn Milliarden Jahren war und ähm.Dann kann man daraus schon Schlüsse ziehen, wann sich diese Galaxie überhaupt gebildet hat, wie alt diese Sterne da sind, also sind das sozusagen dann auch wirklich mit die ersten Sterne, die sich im Universum gebildet haben?
Helmut Dannerbauer
Ja, nicht unbedingt. Also was man halt eben, wenn man dem, also wenn man den eben beobachtet, was man eben dann eben,man kann also wir wir messen natürlich äh sein äh die Mitglieder von diesem Galaxienhaufen,Darüber kann man dann eben eine Idee von der von der von der Masse, von diesem Galaxienhaufen bekommt. Das ist aber dann nicht nur die stillare Masse, sondern die die ganze Masse eben auch äh zusammen mit der mit der dunklen Materie,Und dann gibt's halt eben verschiedene Modelle.Eben auch ähm mit bezüglich der Entwicklung von Galaxien Galaxienhaufen, dann kann man eben eine Schätzung machen, welche Masse dieser Galaxienhaufen in unserem lokalen Universum hätte. Alsozum Beispiel eine eine Masse hat, eine Größe, wie zum Beispiel der Wirgo Galaxinhaufen, den du gerade eben erwähnt hast. Aber es gibt noch einen äh ein größeres Schwergewicht. Das nennt sich äh Koma Galaxienhaufen. Der Zucker eine eine eine Sternmasse vonSehen zu hoch. 5zehn äh Sonnenmassen.
Tim Pritlove
Wie viel Galaxien hast du denn schon so ähm entdeckt? Also was er selber welche auch äh,quasi erstmalig gefunden. Wie wie geschieht das? Ist das Zufall oder,speziell auf die Suche und guckt sich explizit äh die schwarzen Flecken an weil es gibt ja jetzt dieses,beeindruckende Bild äh von Hable, dieses äh Deepfield, wo man einfach mal gesagt hat, okay jetzt jetzt gucken wir mal irgendwohin, wo bisher aus unserer Sicht noch gar nichts war, so einfach so ein kleiner Patch, der einfach,schwarz war, weil einfach alle Instrumente bisher da nichts Nennenswertes ähm haben, detektieren,könnten und dann möglichst lange draufgehalten und da irgendwie alles äh Licht gesammelt, was sozusagen kam und dann stellen wir fest so, oh mein Gott, it's full of Galaxys, also es war sozusagen einfach,komplett voll mit ähm Galaxien, die man so nie gesehen hat, weil man einfach noch nicht lange genughingeschaut. Also ist das sozusagen auch dein dein Ansatz oder wo beziehst du oder oder gehst du primär auf Galaxien, die du sowieso schon in irgendeinem Suve mal abgefallen ist, aber man muss ja sozusagen erstmal irgendwo hin orientieren. Wie wie wie gehst du da vor?
Helmut Dannerbauer
Äh es gibt verschiedene Ansätze, also zum Beispiel eben mit dem mit dem Spider-Wap ähm äh Galaxien äh Haufen.Der wurde eben im im Optischen, na, im verroten Bereich, eben entdecktaber wir sind auch davon ausgegangen, dass sich sogenannte Galaxien in dem befinden können. Das sind halt eben Galaxien, die sehr starkskurriert sind, die halt eben 99Prozent ihrer Energie halt eben imfraroten Bereich ausstrahlen und und eben eigentlich im optischen Bereich fast sogar unsichtbar sind und da haben wir.
Tim Pritlove
Start-Star Dust.
Helmut Dannerbauer
Starbursts. Starburs, Starburst, ja. Der Name kommt halt eben daher, dass er Leben in einem sehr kurzen Zeitraum halt eben äh,enorm viele Sterne entstehen, zum Beispiel eben in unserer in unserer Milchstraße geht man davon aus, dass eben eins bis fünf Sonnenmassen pro Jahr produziert werden.Diesen Starburse geht man halt eben davon aus, dass halt eben bis zu mehreren tausend Sonnenmassen pro Jahr entstehen.Aber ist natürlich dann eben so, wie ich dann eben das vorher auch erwähnt hatte, ist mit dem 30 Meter Teleskop, mit dem molekularen Wasserstoff, mit dem Gasreservoir, wo halt eben daraus die Sterne entstehen. Das hat praktisch eben auch das Treibstoff für die Stirne entstehen, der ist sehr nur begrenzt.Und äh so ein Starbist dauert halt dann eben nicht eine Milliarden Jahre, sondern ist halt eben nach etwa vielleicht zehn Millionen Jahren schon vorbei.Halt eben eine eine kurze Phase in der in der Entwicklung eben von Galaxien.
Tim Pritlove
Das heißt, es entsteht die Masse. Also die Masse entsteht ja nicht, die ist ja eh schon da, aber es lumpt sich sozusagen zu Sternen zusammen.
Helmut Dannerbauer
Genau richtig richtig. Also man haltet eben den äh molekularen Wasserstoff und kollabiert halt eben und daraus entstehen halt dann eben eine neue Generation von von Sterne.
Tim Pritlove
Wie wie es man sozusagen auf diese Galaxie gekommen, wenn die kaum zu sehen ist. Also hat man sie aktiv gesucht auf irgendeine Art und Weise. Also sucht man nach speziellen Patterns?
Helmut Dannerbauer
Genau, es ist dann eben eine aktive Suche. Man hat halt eben dann zum Beispiel Instrumente, die oder Teleskope auch, die halt dann im im Bereich äh zum Beispiel eben sehr sensitiv sind,Guckt man die die Galaxien oder den Galaxienhaufen, das Objekt, was man halt eben beobachtet, halteinfach in einen anderen Wellenlängenbereich an und in dem Fall bei diesem Galaxienhaufen hat man halt eben,Galaxien äh gesehen im emperroten Bereich, wo man halt äh vorher nichts gesehen hatte,Und dann gibt's halt eben Nachbeobachtungen, dann werden auch eben Datensätze von verschiedene Wellenlächen äh Bereich eben äh zusammengenommen, um halt eben die Galaxie zu sehen. Das bedeutet ja nicht, wenn man jetzt die Galaxien im verroten Bereich sieht, dass man,was die dann nicht dem anderen Wellenbereich äh auffindbar ist, sondern man versucht halt eben die Daten miteinander zu kombinieren, um halt eben praktisch die Galaxy über verschiedenen äh Wellenbereich ähm äh zu studieren, zu charakterisieren.
Tim Pritlove
Schon die ganze Zeit dieses Bild aus Blade Runner im Kopf, wo man irgendwie so äh immer durch das Foto durchgeht und dann so ja äh Computer in Hans und dann klack klack, klack, klack, klack und dann hat man das irgendwie so so funktioniert das ja nicht.Wenn du jetzt sagst, dann guckt man sich das halt mal an. So also was ist denn das überhaupt für ein Prozess? Also die Teleskope,Okay, den sagt man irgendwie hier, äh ihr gebt mir Zeit,Guck doch mal da hin, das passt doch. Da schaut ihr doch sowieso gerade hin. Da seid ihr ausgerichtet. Da steht die Erde richtig et cetera. Dann,da die Klappe aufgemacht, das Teleskop äh schaut hin und zeichnet ja erstmal alles roh auf, was da irgendwie kommt. Das Teleskop selber,ja in keiner Form, nämlich jetzt mal an oder wird es schon in irgendeiner Form auf irgendetwas parametrisiert? Also man kriegt ja quasi so ein Rohdatenstrom vonallem, was da irgendwie rumzurbt und in irgendeiner Form in diesem entsprechenden Frequenzbereich äh Signale von sichdas wird dann irgendwie aufgezeichnet, dürfte sich wahrscheinlich um Terrawates handeln jedes Mal, weiß ich nicht. Und was passiert dann damit? Wie arbeitest du damit.
Helmut Dannerbauer
Aber was ich vielleicht davor noch erwähnen möchte ist, also bevor man ans Teleskop kommt, ist auch sehr viel Arbeit. Also man muss,Man muss ja erstens mal eine Idee haben und dann ist es natürlich auch so, man kann jetzt nicht sagen und sagt,zum Teleskop, ich möchte jetzt da mal beobachten, sondern da gibt's halt eben auch Competition. Ähgibt halt eben bei den verschiedenen Teleskopen, gibt's ja dann ich sage mal eine Frist, wo man entweder zweimal pro Jahr oder bei Alma ist es einmal pro Jahr, wo man dann eben die sogenannten Beobachtungsanträge einreichen kann.Ist man dann eben zum Beispiel der sogenannte Principle Investiga. Da gibt's dann eben auch ein Team mit den mit den sogenannten co-Eis.Und da schreibt man dann eben einen Antrag, also da schreibt man eben meistens eine Motivation, induction über das Thema,Dann natürlich auch, was man machen will und warum das wichtig ist.Was wir wirklich daraus lernen, was der nächste Schritt ist eben halt eben in seinem Themengebiet, wie es zum Beispiel bei mir ist bei Galaxinenentwicklung, was man daraus lernt,Und darüber hinaus ähm muss man denn eben auch angeben, wie viel Beobachtungszeit man eigentlich beantragt, in welchem Beobachtungsmodus wie du vorher zum Beispiel auch schon erwähnt hattest. Es gibt ja spektroskopie aber man kann zum Beispiel auch äh schöne Bilder machen.Bilder eben an. Schöne Bilder hat man erst, nachdem man Datenreduktion gemacht hat, was du eben vorher schon erwähnt hast und das hängt halt eben von den verschiedenen Teleskopen ab. Dasist schon sehr, kann sehr kompetitiv äh sein, also der sogenannte kann bis zu zehn sein, also die Chance ist 1 zu 10, dass du vielleicht äh dann weg.
Tim Pritlove
Zehnmal, zehnmal mehr Leuten, eine Zeit wird beantragt, als tatsächlich vorhand.
Helmut Dannerbauer
Richtig beobachtungsanträge. Es gibt, wie gesagt, es hängt vom vom Teleskop ab, auch vom Instrument. Und das ist natürlich dann schon also ja.
Tim Pritlove
Job sein da in der Auswahlkommission zu sein und irgendwie so vielen Leuten Absagen zu erteilen.
Helmut Dannerbauer
Richtig, er hat äh ja ich war auch schon in in solchen äh Kommissionen, was man, denke ich, auch erwähnen sollte, ist jetzt in den letzten Jahren hat sich das Q-Sederin äh gewissermaßen geändert. Es geht jetzt wirklich zu anonymes.Ich meine, wir normalerweise als Antragsteller, wir wissen eh nicht, wer im Komitee ist. Das erfährt man dann vielleicht äh danach. Aber auch äh die Leute, die im Komitee sind.
Tim Pritlove
Soll nicht wissen, wer da.
Helmut Dannerbauer
Richtig richtig es geht halt eben darum wegen dem Namen auch eben Gender-Balance und auch eben äh und auch eben sage ich malschon Leute, die halt jedem länger mit dabei sind, um halt wirklich das ähm so fair wie möglich halt eben zu machen, weil es gibt halt eben Statistiken und und die zeigen halt eben, dass es halt dann eben.
Tim Pritlove
Die alten Männer sind, die immer die Zeit kriegen, ne.
Helmut Dannerbauer
Halt eben bei es gibt aus aus irgendwelchen Gründen und es wurde halt eben wirklich in den letzten Jahren von verschiedenen Observatoren wirklich äh sehr sehr studiert.Und es gibt zum einen eben das mit den Komitees, wie sie zum Beispiel auch mit dem, aber was man auch äh mehr dazu tendiert ist, wird zum Beispiel auch bei Alma ähm gemacht, aber auch zum Beispiel jetzt bei den Esoteresgruppen ist.Man reicht einen Beobachtungsantrag ein.Und dann zum Beispiel bei Eimer verpflichtet man sich, dass man dann auch tatsächlich dann zehn Beobachtungsanträge von anderen Leuten, also von seinen Mitbewerbern, dann eben auch ähm durchschaut, eine Bewertung ab,gegeneinander selbst bewertet,diese Methode scheint anscheinend ganz gut zu funktionieren und das wird halt eben in in wie gesagt bei der bei Alma wird das jetzt schon schon praktiziert,praktisch selbst,Hotel, also natürlich nicht seinen eigenen Antrag, aber den Antrag äh von von Leuten, also ich muss jetzt nicht unbedingt das gleiche Themengebiet sein, also es kann schon ein bisschen ähnlich sein, aber ist natürlich klar.Sowohl wenn man den Komitees als auch eben sage ich mal in diesem Prozess, wo man dann als Mitbewerber auch die Beobachtungsanträge durchschaut, wird man eben natürlich auch gefragt, ob's Konflikte gibt, dass haltman kein bekommt, da wo der Kollege vom gleichen Institut zum Beispiel drauf ist oder zum Beispiel mit Leuten, mit denen man sehr stark zusammenarbeitet, dass man die halt eben nicht äh beurteilen soll, sondern es ist halt wirklich,so fair es möglich halt äh sein äh soll.
Tim Pritlove
Ketzerisch reinwerfen so na ja ich meine äh wenn man wenn man die ganze Konkurrenz mitbewertet dann sagt man einfach ja der Rest ist alles Quatsch äh nur meins ist toll. Das,Wird sicherlich so nicht stattfinden, aber was ist denn quasi Sinn dieser Methode an der Stelle? Also was will man damitbewirken, dass es mehr Awareness gibt für äh was sonst noch so kommt oder dass man Kollaborationen feststellt oder dass,es ist einfach nur eine Arbeitsteilung und und und die Ethik ist halt einfach im Wissenschaftsbereich so, dass man äh ordentlich bewährt.
Helmut Dannerbauer
Ja zum einen also man hat gar nicht die Möglichkeit jetzt sage ich mal sein eigenes Proposil zu zu pushen, sondern man kriegt ja zum Beispiel sage ich mal zehn pro Person wie das jetzt bei Alma bei der letzten Runde war,Und dann macht man das einfach so. Das Beste ist Nummer 1 und das Schlechteste ist Nummer zehn.Das macht halt jeder äh Gutachter, Gutachterin so und daraus ergibt sich eine Durchschnittsbewertung.
Tim Pritlove
Also man gibt sozusagen ein Ranking raus und nicht einen absoluten Wert, wie gut man das findet. Irgendwas muss immer das Beste sein sozusagen.
Helmut Dannerbauer
Ja genau. Man hat halt und jeder hat auch immer andere Zehen pro.
Tim Pritlove
Das funktioniert.
Helmut Dannerbauer
Und es ist natürlich auch so, ich meine ich erwarte ja auch, dass meine Kollegen das mein.
Tim Pritlove
Wollte es auch keinem unterstellen, dass es so ist. Ich habe nur gerade versucht äh zu verstehen, wie die Logik ist, aber in dem Moment, wo man sagt, okay, man stellt nur ein Ranking her, muss es ja quasi einen Gewinner äh geben und dadurch nivelliert es sich, weil da ist man dann wahrscheinlich ehrlich.
Helmut Dannerbauer
Und was man natürlich auch ähm dadurch spart, das sind zum Beispiel auch Reisekosten wenn man natürlich ein Komitee hat, ähm die treffen sich dann halt an einem Ort und das ist natürlich auch ein großer organisatorischer Aufwand und so ist es halt dann eben so.Dass man das, sage ich mal, zu Hause am Computer macht und dann halt eben die Bewertung einreicht,Man muss natürlich auch eine eine Begründung drin haben, aber es reicht nicht, wenn man jetzt sagt Nummer eins und Nummer zehn, sondern man will auch selber, wenn man den Antrag stellt, möchte man ja auch äh Feedback bekommen, was auch sinnvoll ist. Wo man wirklich beim nächsten Mal, wenn es dieses Mal das nicht klappt.Beim nächsten Mal eine Chance hat, dass es halt dann eben akzeptiert wird.
Tim Pritlove
Okay, das heißt, man erhält als Bewerber auch die Bewertung oder die Begründung für das Ranking von den anderen zurück, um das selber studieren zu können, aber man sieht dann nicht, von wem es ist.
Helmut Dannerbauer
Ne. Möchte ich auch gar nicht wissen.
Tim Pritlove
Okay, gut verstanden zu haben. Alles klar. Also es ist ein komplexer äh Prozess. Es ist ein offener Wettbewerb.Um die Zeit, die die Teleskope halt bieten und wenn man dann gewonnen hat, so, dann.Vorhin schon bei James Web Teleskop, dann wird das halt irgendwann terminiert. Das äh hängt dannsehr viel davon äh ab, was sonst noch so äh beobachtet wird, dass man das eben gut miteinander kombinieren kann und dann kann das irgendwie Monate in der Zukunft liegen,Wenn es so jedes Jahr festgelegt wird, kann's auch ein Jahr dauern, bis man dann sozusagen seine Beobachtungszeit bekommt.
Helmut Dannerbauer
Und dann gibt's halt eben auch zwei Möglichkeiten. Also eine Möglichkeit ist halt eben, dass man praktisch vor Ort beobachtet,Also zum Beispiel jetzt bei den bei unserem Teleskopen hier, aber auch zum Beispiel bei der ESO, dass man halt eben vor Ort fliegt.Oder was halt eben auch seit einigen Jahren stark verbreitet ist, ist halt eben der sogenannte Service-Mode.Das bedeutet, dass man halt eben sein Beobachtungsprogramm einreicht mit den Parametern, wie man das halt eben beobachten willdann wird es halt eben von Mitarbeitern wie jetzt zum Beispiel bei unserem Teleskop,führt die Beobachtung. Man gibt halt eben auch ähm Instruktionen an, wie das halt eben gemacht werden muss. Und wie gesagt, es werden dann eben auch Parameter wie zum Beispiel Beobachtungszeit oder welchen Filter man,möchte oder welche natürlich die Position der Galaxien, die man beobachten will, wird halt eben angegeben und dann wird das halt eben durchgeführt. Und der Vorteil von diesem Service-Mode ist natürlich sodass ähm das jederzeit beobachtet werden äh kann. Also die wird halt eben geguckt, was waren die Bedingungen, ähm die man nachgefragt hat, die Wetterbedingungen, waren das jetzt sehr gute oder eher schlechtere. Wenn man jetzt natürlich wisset Herr Mode ähm einreichtbesteht halt das Risiko, wenn man dann vor Ort ist am Teleskop und dann ist drei Nächte schlechtes Wetter, dass man halt dann keine Daten bekommt und da muss man halt den Antrag wiederstellen. Aber es gibt natürlich auch gewisse Projekte, wo es halt einfach erforderlich ist, dass man wirklich vor vor Ort ist.Dass man gleich die Daten inspiziert und dann Entscheidungen trifft. Zum Beispiel das war auch beim 30 Meter Teleskop so. Wir hatten Galaxien beobachtet, wo wir eben nicht wussten, was die Entfernung der Galaxien ist.Wir wollten halt eben eine Emissionslinie finden und das reicht ja nicht nur eine Linie, wenn man eine Linie hat, weiß man immer noch nicht, die Rotverschiebung, sondern man braucht verschiedene Linien, um.
Tim Pritlove
Eine Emissionslinie um um die Distanz dann äh daraus.
Helmut Dannerbauer
Genau richtig, genau richtig. Also das nennt sich ja spektroskopische Rotverschiebung, also nur mit einer Spektroskopischen Rotverschiebung weiß man ja wirklich die genaue Entfernung der Galaxie und deswegen braucht man halt eben mindestens zwei emissions.
Tim Pritlove
Man schaut hin und man sieht dann eigentlich so, ich äh vermute mal die die typischen Muster der äh das, was man sozusagen erwartet, nur eben mit einer entsprechenden Verschiebung und der Verschiebung kann man dann die Distanz entnehmen.
Helmut Dannerbauer
Ja genau richtig und zum Beispiel mit dem 30 Meter Teleskop ist halt das Gute, man nimmt die Daten auf,Dann kann man die auch gleich reduzieren, also erstmal, sage ich mal, vorläufig, aber dann kann man schon gucken, ob da was ist oder nicht. Und wenn man zum Beispiel eine Linie hatkann man sein Gerät so tunen, dass man dann eben beim anderen Frequenzbereich guckt, um halt eben die zweite Linie zu finden, die da vorhergesagt ist.Das ist halt eben der Vorteil, wenn man halt direkt eben am am Teleskop ist und,Genau, also das sind dann sage ich mal die die beiden ähm Methoden und abhängig auch äh also Visiter Mode und Service-Mode und abhängig auch vom Teleskop.Beim da hat man dann schon mit dem Beobachtungsantrag eben auch schon die Beobachtungsmodi eingereicht. Es gab dann zwar nach der nachdem das akzeptiert worden ist, nochmal die Möglichkeitdrauf, einen Blick zu werfen, die Kollegen vom haben dann auch Sachen gefunden, die man vielleicht verbessern kann, aber in der Regel ist es das, was man beantragt hat und vor allem man kann nicht sagen, uh, ich habe jetzt einen Fehler in der Berechnung gemacht, ich möchte.Ich jetzt fünf Stunden oder so, das geht natürlich nicht. Es gibt auch eben dann die Möglichkeit oder nicht die Möglichkeit oder es wird so gemacht.Nachdem der Antrag akzeptiert worden ist,dann erst einreicht, wie man das tatsächlich also die Beobachtungsparameter. Man hat das natürlich schon im beschrieben, aber es wird dann eben haltalles genau angegeben Integrationszeit, welchen Filter man benutzt, Koordinaten und so weiter. Das nennt sich auch sogenannte Phase zwei und das ist dann auch schon schon harte Arbeit, wo man auch äh Fehler machen könnte und deswegen muss man da auchgenau arbeiten, aber das ist auch schon, wenn man den Beobachtungsantrag stellt, wie ich schon gesagt habe, wenn man jetzt einen Fehler in der Kalkulation macht, ist das halt dann nicht so optimal.Und dann, jetzt komme ich da endlich zurück zu deiner Frage eigentlich, was man da macht,entweder man ist vor Ort vom Teleskop, dann kriegt man gleich die Daten oder die Daten werden für einen genommen und wenn dann die Daten eben die Qualität hat, die man eben beantragt,also den sogenannten Noise zum Beispiel jetzt im im Radiobereich, wenn dann der erreicht worden ist, dann bekommt man halt eben die Daten.
Tim Pritlove
Quasi eine Eigenschaft, die man der Beobachtung ansehen kann, wie viel äh Störgeräusche da drin sind.
Helmut Dannerbauer
Genau richtig, also es gibt halt eben dann äh von den Mitarbeitern, von den verschiedenen Observatoren die schauen sich da mal schon schnell die Daten an, wo halt eben das erreicht worden ist, was halt wir eben beantragt hatten und dann bekommt man die Daten.
Tim Pritlove
Woher wisst ihr denn das? Also woher wissen die denn, dass das von den Signalen, die man bekommen hat so und so viel.
Helmut Dannerbauer
Na, es wird halt eben gemessen, also.
Tim Pritlove
Wie kann man denn die Noise messen, also woher weiß man, dass das Signal, dass das Signal ist und nicht neu ist, also wo wodurch wird die Noise dann erzeugt.
Helmut Dannerbauer
Der Noise, der Noise ist äh sogenannte das Rauschen, also wie soll ich sagen, die die.
Tim Pritlove
Ja, aber wie lässt sich die also wo du wodurch fluktuiert die? Ist das nicht eine Eigenschaft, einfach das Testoskops? Wie gut, dass Teleskop so misst.
Helmut Dannerbauer
Hat was mit dem Teleskop im Instrument natürlich zu tun, aber es hat natürlich auch was mit der Beobachtungs äh Methode äh zu tun. Man hatbeobachtet zum Beispiel jetzt seine Galaxie mit der Emissionsliniedann sage ich mal links und rechts von der äh von der ist ja gar nichts, weil da eben keine Emissionslinie ist. Es gibt so Parameter, die nennt sich Signal to Noise.Fünf,Also das halt eben das Signal im Vergleich zum Rauschen, was man müssten. Faktor fünf äh ähm eben gut ist und das sind. Das hat eben auch was mit Statistik dann zu tun. Da geht man davon aus, dass das dann eine sehr hohe signifikant eben dieser Messung ist.So wird das eben gemacht, also.
Tim Pritlove
Okay, also das ist dann sozusagen noch mal so eine Hürde, die übersprungen werden,muss und im Idealfall ist jetzt alles super gelaufen und äh die Beobachtung hat so stattgefunden, wie man das äh möchte beziehungsweise in diesem Modus dann halt auch so interaktiv, dass man sagt okay, alles klar. Jetzt haben wir müssen wir erstmal den Abstand,bestimmen, weil das dann für die künftigen Messungen eine andere Einstellung des Teleskops erfordert, ne? Und dann erhält man die Daten.Sofort danach dauert das noch äh Tage, Wochen, Monat.
Helmut Dannerbauer
Halt eben auch äh von dem Observatorium drauf an und wie auch äh intensiv äh die Datenkontrolle ist, zum Beispiel bei Almaihm wirklich ähm ja sicherstellen, dass wir als dann Benutzer eben auch wirklich die Daten bekommen, die wir halt eben gefordert haben. Aber es kann ja was sein, dass bei den Beobachtungen was schief gegangen ist oder so.Dass dann vielleicht die Wetterbedingungen äh sich äh kurzzeitig geändert haben. Das kann auch im Optischen zum Beispiel sein. Wenn du sagst, ich möchte ein haben von besser als einer Bogensekunde.Aber auch die Astronomen sind ja keine Vorhersage. Es kann ja dann sein, dass ich dann plötzlich das Siegen von 1 auf 1,5 verschlechtert und das hat natürlich starke Auswirkungen wiederum auf auf den auf das sogenannte Rauschen. Das wird halt dann eben eben.
Tim Pritlove
Verschlechterung zum Beispiel durch die Atmosphäre, die man sozusagen nicht unter Kontrolle hat. Vulkanausbruch, was.
Helmut Dannerbauer
Richtig genau. Genau, also es hat nichts mit der Galaxy selber zu tun, sondern das hat äh praktisch zwischen uns zu tun, richtig mit mit der mit der Atmosphäre richtig. Wenn man halt eben vom vom Boden beobachtet.
Tim Pritlove
Wie kriegt man denn die Daten dann?
Helmut Dannerbauer
Ähm äh wie man die Daten bekommt.
Tim Pritlove
Per Mail.
Helmut Dannerbauer
Also früher war das tatsächlich so. Früher hat man ähm sich auch die Daten nur zuschicken lassen. Hat man die ja dann zum Beispiel äh von der äh von der mit der CD bekommen.Mittlerweile schickt man sich die Daten, äh kann man die Daten runterladen, zum Beispiel es gibt dann dann eben FTB Server, da werden die Daten dann hinterlegt und selber lädt man dann die Daten einfach runter.Und wie gesagt äh von von Teleskop zu Teleskop kann das halt eben relativ äh zügig sein, aber auch um noch ein, zwei, drei, vier Monate äh warten, aber es kann natürlich auch so sein, dass zum Beispiel eine Galaxy, sage ich mal, im im Januar beobachtet wird, aber haltnicht die ganze Zeit, sondern da wird dann auchim Februar und dann bekommt man natürlich nicht die Daten schon im Januar, sondern im Februar. Es hängt natürlich dann auch wieder vom Projekt, da wenn man sagt, wenn man mit 50 Prozent der Daten auch schon was machen kanndann kann man vielleicht auch mal nachfragen, ob man vielleicht äh vorher Zugriff hat. Aber wie gesagt, das hängt halt wirklich stark von den von den Observatoren ab und auch von ihren Regolarien.
Tim Pritlove
Wie einheitlich sind denn diese Datenformate? Kriegt man immer alles im selben Format von allen Teleskopen oder man da hält ja der Teufel im im Detail, ne? Da kann ja jedes Bit äh.Einen Unterschied machen, wenn man mit den Daten was anfangen will.
Helmut Dannerbauer
Also was ich halt.Eingebürgert hat, ist das sogenannte Schutzformat. Und das hat einen sogenannten Header, da stehen halt dann eben Informationen äh zu dem Fall dort und wie Beobachtungszeit, wer beobachtet hat.Koordinaten und dann äh im zweiten Teil, das sind halt dann praktisch wirklich die Daten entweder ein Bild oder ein Spektrum.
Tim Pritlove
Image Transportsystem von der.
Helmut Dannerbauer
Ja genau, das wollte ich vorher grad sagen, da gibt's eine Abkürzung.
Tim Pritlove
Mhm ja 1achtzig entwickelt, alles klar.
Helmut Dannerbauer
Genau richtig, aber bei bei gewissen Teleskopen gibt's auch ein anderes Format, aber die Observatoren sorgen dann eben dafür auch, dass es dann eben eine Software dazu gibt, dass man, wenn das Format ein wenig anders ist, dass man dann eben trotzdem mit den Daten arbeiten.
Tim Pritlove
Mhm. Okay, also es ist im Prinzip so ein Datenformat, in dem man einfach so mehr dimensionelle äh Eras von von Daten und,dann halt Spektren et cetera abbilden äh kann als Bilder, sodass halt einfach klar ist, okay er ist da dieser Bereich, den wir uns dieses Jahr angeschaut haben,ist so dargestellt. Koordinaten sind mit drin und dann kann man das äh gleich auch einspeisen in seine eigene Verarbeitung.
Helmut Dannerbauer
Richtig, also man kann entweder das Verarbeitungstool von dem Teleskop verwenden oder,Man verwendet auch seine eigene Verarbeitungstool. Das hängt da wirklich äh stark von den Teleskopen und auch sogar von Wellenlängenbereich ab. Zum Beispiel mit allem ist es halt so, da gibt's halt dannmittlerweile ein Tool, wo auchdie Idee dahinter ist, das das nennt sich Casa, das ist aber nicht nur für Alma verwendet werden kann, sondern zum Beispiel auch für das Very Lager, das ist das Radioteleskop, was in dem Film mit da war, Contact.
Tim Pritlove
Mhm.
Helmut Dannerbauer
Genau richtig und da versucht man zum Beispiel auch in der Radio-Astromie jetzt so ein einheitliches äh Tool zu haben, weil zum Beispiel optischen Astronomie haben wir sehr viel auch IRAF benutzt. Das konnte dann eben für verschiedene,Aufgrund des Fitzformats eben halt hat man halt eben dann von verschiedenen Teleskopen, sage ich mal, eh so kack, wie auch immer oder auch von hier hat man da eben damit arbeiten können.Und richtig und dann ist halt eben kommt halt eben wie gesagtwieder eben vom Teleskop drauf an, kommt daneben ein möglicherweise harter Schritt oder oder viel Arbeit eben die Reduktion der Daten,auch die Kalibration die Daten. Also man will ja dann eben auch wissen wie viel also man will ja die Energie zum Beispiel messen von den Galaxien oder von den Linien und dazu ist es halt eben äh fundamental, dass man eben die Daten richtig kalibriert.Und nach der Kalibration der Daten ähm erfolgt dann eben auch,dann die Messung zum Beispiel der der Emissionslinie, aber wenn du jetzt ein ein Bild hast eben die sogenannte Magnethode, also die die Helligkeit der Galaxie.Und dann der nächste Schritt ist natürlich dann mit diesen Daten ähm die man dann eben reduziert hat. Kalibriert hat, dass man dann eben Analysen macht.Eigentlich dann die wissenschaftliche Arbeit und das ist halt finde ich auch das Spannende bei einem Job. Ich mache halt nicht nur eine Sache, sondern ich habe wirklich verschiedene Tätigkeiten durchzuführen.Vom Antrag schreiben, wo man halt wirklich seine eigene Idee hat, wo man sich auch, sage ich mal, verwirklichen kann.Bis halt eben dann die wissenschaftliche Analyse. Und dann war's halt eben zum Schluss kommt es, das ist ja das, was bei uns ja eigentlich nur zählt. Ich vergleiche das immer ganz gern mit Fußball. Ist das Paper?Wenn du dann deine Arbeit nicht veröffentlicht hast, dann existiert die praktisch nicht. Also das Paper ist das, wo das zeigt, du hast was gemacht und und.
Tim Pritlove
Ist ein Ergebnissport, möchtest du sagen.
Helmut Dannerbauer
Ja richtig, das sage ich auch immer wieder zu meinen äh Studenten und auch äh zu meinen äh Mitarbeitern, dass.Natürlich ein bisschen vielleicht hart an, aber im Endeffekt zählt nur das Paper.Also du kannst noch äh so schön und das so toll gemacht haben und Trumpf gefaltet ist, aber wenn du nicht dein Paper hast oder vor allem, was halt eben auch stark zähle, ich gehe jetzt wieder im Vergleich zum Fußball, das ist das erste Auto, Paper.Das soll wirklich auch der führende Autor von dem von dem Fußball genauso. Die größten Stars im Fußball sind nicht die Torhüter oder die Abwehrspieler, sondern sind die Stürmer. Weil die, wie du ja vorher gesagt hast, das Ergebnis praktisch.Erstellt haben und äh dazu halt geführt haben ist. Also es ist natürlich ein ganzes Team wichtig,Aber richtig, man wird halt dann oft gemessen oder karieren hängen halt eben auch stark davon ab, wie wie viel man publiziert hat und und auch,Erstauto PayPal, auch vor allem auch Rosta Impact war. Also wie oft das Paper dann von den Kollegen im im Fachbereich dann auch zitiert worden ist.Aber so kann man praktisch ein das ja wie soll ich sagen abschließen, also vom Beobachtungsantrag, also im Idealfall, akzeptiert und bist dann halt das fertiggeschriebene Paper.Das kann schon eine Zeitspanne von eins zwei oder drei, vier Jahren sein, also eine Doktorarbeit dauert ja auch in der Regel drei, vier Jahre.
Tim Pritlove
Jetzt müssen wir wieder zurückkommen zu den zum eigentlichen Ziel, nämlich die Beobachtung der Galaxien. Was was schaut man sich jetzt sozusagen äh primär,an, was ist so der Fokus deiner Beobachtung, also was genauschaut man sich dann an. Meiner Meinung hat so viel Daten. Das sind ja unglaubliche Datenmengen, das ja schon angedeutet, so die Reduktion ist letztlich äh entscheidend. Man man will halt ja irgendwie auf die Essenz kommen.Was sind sozusagen die die Mysterien, die die jetzt gelöst werden sollen?
Helmut Dannerbauer
Sprechen wir mal wieder von dem Galaxienhaufen, wo halt eben die Galaxien sind, den den Galaxienhaufen, Galaxy-Protocluster ist, also,wie gesagt äh den Haufen, also die ganze Strukturen dann eben halt eben die die Mitglieder und von diesen Mitgliedern zum Beispiel haben wir jetzt auch mit einem australianischen ähm Interfernometer, das nennt sich,der Australian Teleshaben wir eben auch eine eine Durchmusterung von dem ganzen Galaxienhaufen eben mit Carbomonoxid in der in der in der den Übergang eins nach null äh durchgeführt und wir wollten halt rausfinden, wie viel molekular Gas ähmjeder von diesen Galaxienhaufen äh Mitgliedern hat und vor allem äh diese Kennzahl, das ist ja praktisch der Treibstock, das ist was zur Verfügung steht,Aber das sagt er nichts, äh ob dann die Galaxy tatsächlich alles äh wie soll ich sagen, verwendet, um Sterne zu entstehen. Und da gibt's halt eben einen weiteren Parameter, den kann man eben zum Beispiel eben auch äh mit Radioteleskopen äh beobachten, das ist halt eben der,die wir vorher schon erwähnt hatten ist und der,der ist auch ein Indikator, die Sternenanstörungsrate. Also man kann sich das ja auch äh sage ich mal äh vorstellen mit mit der mit der realen Welt zum Beispiel. Äh wenn Sterne entstehen, dann gibt's das Abfallprodukt der Staub.Ist ja wie beim Hausbau oder beim Hochhausbau, du hast dann auch äh an der Baustelle eben auch Staub und dann auch mit der Messung vom Staub,du dann eben was über die sogenannte Sternenstörungsrate sagen. Also.
Tim Pritlove
Mit Staub meint man im Prinzip eine Ansammlung von allen möglichen äh Elementen, die in kleinen und größeren Mengen wild durcheinander gemischt äh existieren.Erstmal noch nicht genug größeren Verbund drinstecken.
Helmut Dannerbauer
Richtig solide Partikel, aber die sind jetzt nicht so groß wie der Hausstaub bei uns zu Hause.
Tim Pritlove
Auf atomarer Ebene.
Helmut Dannerbauer
Ja Mikrometerbereich sind die groß. Richtig und bei dem Staub ist es zum Beispiel auch eben so,werden dann von den neugeborenen Stern, der sehr heiß ist, kann ein O-Stern zum Beispiel sein, die werden dann eben angestrahlt,und die erhitzen sich, das ist genauso wie wir. Wir sind jetzt auch in Teneriffa mit der Sonne, um uns jetzt auch wärmer. Wir strahlen jetzt auch grad Infrarotstrahlung ab. Und das Gleiche passiert eben auch mit diesem Staubpartikel. Das wird erhitzt von der von der Strahlung von dem jungen neuen Stern,und strahlt dann wieder ab und diese re-emitierte Energie beobachten wir dann halt eben äh im im und das Tolle ist halt eben, selbst wenn der Stern obskuriert ist durch den Staubdie man im Optischen nicht sieht, kann man praktisch doch nachweisen, da ist Sternenstehung.
Tim Pritlove
Staubleuchte.
Helmut Dannerbauer
Staub eben äh beobachten. Deswegen ist es halt eben komplementär in verschiedenen Wellenlängen äh Bereichen zu beobachten.Galaxien, die du im Optischen, das siehst du, sage ich mal, die linke Seite,aber die rechte Seite siehst du nur ähm im infraroten Bereich, weil die rechte Seite halt eben obskuriert ist, weil da eben grad eine Verschmelzung stattfindetgenau richtig. Und dann, wenn man zum Beispiel jetzt in diesem Fall die beiden Parameter hat, das Molekulargasreservoir, aber auch die Sternumstehungsrate, kann man diese beiden äh Parameter miteinander kombinieren?Dann eben zu sagen wie effizient in dieser Galaxie Sterne entstehen. Ob das jetzt schnell passiert oder langsam,ob das Gasreservoir eben auch lange äh da ist oder sich schnell verbraucht, wie ich vorher eben auch schon gesagt habe, vielleicht in zehn Millionen Jahren.Dann kam er eben auch über den Tipus von der Galaxie was sagen, also zum Beispiel unsere unsere Milchstraße oder Spiralgalaxien.Die würden das Gas oder verbrauchen das Gas über über Gigajahre, also da geht es nicht äh rucki zucki in in zehn Millionen Jahre und wenn man jetzt dann auch im im weit entfernten Galaxienhaufen Galaxien entdeckt, die eine ähnlicheÄh Sternenstehungsraten Effizienz haben, äh wie unsere äh Milchstraße, dann dann kann man auch Galaxien vielleicht entdecken, die sich eigentlich schon wie unsere Milchstraßebenehmen, aber im weit entfernten Universum sind,Wie hier auch schon vorher gesagt habe, ist, diese Phase ist es sehr kurz, äh wo halt eben der Starbörs stattfindet. Sprich einen großen Teil seiner Zeit äh befindet sich die Galaxie halt eben in einem Bereich, wo haltungsrate ähnlich ist.Bei uns in der Milchstraße ist und das ist ja auch ein Unterschied mit elektrischen Galaxien. Da findet gar keine Sternungsstörungen mehr statt.Zum Beispiel in optischen Bildung, wie ich vorher schon gesagt habe, erlebte Galaxien sind eher rot,alte Sterne und in in in Spiralgalaxien sieht man halt eben zwar auch den zentralen Bereich, den den Ballähnlich zu der lipischen Galaxy, aber außen drum und rum gibt's halt eben die Spiralarme, wo man halt eben blaue Regionen sieht, äh wo halt eben Sterne entstehen.Wenn du jetzt nach unserem Gespräch dir nochmal Fotos anschaust von Spiralgalaxien, wirst du sehen, dass du nicht nur den blauen äh bläulichen Arm siehst, sondern dass da auch so Staubwolken siehst drum rum, also die halt eben im Optischen halt eben das Licht,gelassen haben und da sieht man halt eben dann schon die Verbindung zwischen wir da entstehen neue Sterne, aber da hast du natürlich auch Staub.
Tim Pritlove
Man diese Farben, bei dieser äh äh Bilder mein Verständnis ist, die sind ja sozusagenmuss sich das glaube ich nicht so vorstellen, dass man jetzt durch einen super Teleskop durchschaut und dann sieht man genau diese Farben. Sondern das sind ja das sind quasi aus verschiedensten,Beobachtungsfrequenzbereichen, die ja weit über unseren sichtbaren äh oder vom vom durch den Menschen im im sichtbaren Bereich ähm,dir in irgendeiner Form Farben zugeordnet,damit wir uns das vorstellen können, ja? Aber wenn man eine Infrarotbeobachtung macht, okay gut, wenn's nur die Ferne ist, dann kann man's halt einfach in den sichtbaren Bereich verschieben, aber die Galaxien strahlen ja in allen erdenklichen Frequenzen.Kann man denn dann diese Bilder interpretieren, wenn du jetzt sagst, da ist ja blau, das muss ja gleich auffallen, aber ist ja jetzt nicht, ist das jetzt sozusagen nur sichtbares Licht in dem Moment, was dort abgebildet istoder sehe ich jetzt hier auch ein Bild von äh aus dem aus dem Radiobereich äh was mir in ein sichtbares Bild umgesetzt wird.
Helmut Dannerbauer
Genau, also das hängt halt eben äh davon ab, was man halt eben zeigt. Also wenn man jetzt im Optischen, einfach roten Bereich beobachtet, versucht man dann doch,Farbpalette mit blau, rot, grün und so, das halt doch äh abzubilden, wie das halt tatsächlich ist, dass man einen blauen Filter verwendet hat oder zum Beispiel einen roten Filter.Und aber halt,richtig, aber natürlich beim Radiobereich, man sieht das ja nicht mit unserem Auge. Da hängt es dann natürlich, sage ich mal, vom vom vom Beobachter oder vomjenigen, der die Bilder dann bearbeitet ab, wie er das macht, ob sie das jetzt rot oder grün oder gelb oder äh oder violett macht,das wird muss man halt dann natürlich auch in den Publikationen wird das dann auch natürlich angegeben, dass man sagt, man sieht da zum Beispiel in rot den molekularen Wasserstoff und in in blau sieht man jetzt zum Beispiel die die Sterne.Und in in gelb sieht man äh den Staub. Also manman fängt auch an sage ich mal, seine eigene Farbcodierung zu machen, aber wie gesagt, das passiert vor allem, wenn man halt eben ähm Strahlungen nimmt, wo wo das Auge eigentlich nicht sensitiv ist, wo man eben nicht sagen kann, das ist rot, blau, grün, gelb und so weiter.
Tim Pritlove
Ja, deswegen hätte ich jetzt so ein bisschen Schwierigkeiten äh sozusagen das zu machen, aber du hast jetzt gerade wirklich von einem Abbild im sichtbaren Bereich gesprochen, dass das also tatsächlich so wäre.
Helmut Dannerbauer
Ja, also wenn es möglich ist, dann versucht man das so zu machen. Also wenn man jetzt ebenzum Beispiel was man ja auch oft sieht ist es gibt eben auch Aufnahmen von Galaxien wo man dann auch rote Bereiche sieht, sogenannte Sternungsstehungsregionen, das wurde damit der sogenannten,Alpha-Linie gemacht, das ist eine Kombinationslinie vom vom Wasserstoff halt eben. Bei 6.563 Angsttrümen, das ist halt eben auch dann auch eher im im äh rötlicheren Wellenlängenbereich von von uns.
Tim Pritlove
Muss man unter einer Rekobinationslinie, was wird da rekombiniert?
Helmut Dannerbauer
Also das Elektron ähm wie du beweist, die spielen auf verschiedenen also so stellt man sich das vor. Auf verschiedenen Bahnen rum und es springt halt eben von einer höheren Bahn zu einer niedrigen Bahn und dadurch entsteht dann die Emissionslinie.
Tim Pritlove
Messbare Energie.
Helmut Dannerbauer
Genau richtig. Und wenn das praktisch von unten nach oben springt, in diesem Schalenmodell ist es praktisch die Absorptionslinie. Es absorbiert Energie und deswegen geht es auf ein höheres Energielevel.
Tim Pritlove
Kombinationslinie ist dann die.
Helmut Dannerbauer
Das ist praktisch von von einer höheren Schale auf eine auf einen höheren Energielevel äh auf ein niedrigeres Energielevel.
Tim Pritlove
Okay.Jetzt ist ja äh die Beobachtung also gerade unsere eigenen ähm okay mit unserer eigenen Galaxie mit der Milchstraße, hast es jetzt nicht so.Wie ich's richtig verstanden habe. Ist nicht so interessant.
Helmut Dannerbauer
So würde ich das nicht sagen, aber ich fand, ich habe mich halt einfach ja weiß nicht, weit entfernt in Galaxien, haben mich halt einfach äh.
Tim Pritlove
Interessiert. Ja okay, aber wissen wir jetzt schon mehr über andere Galaxien, äh weil wir die irgendwie besser beobachten können als wir unsere eigene?
Helmut Dannerbauer
Anders würde ich mal sagen. Also klar, unsere Galaxie kann man natürlich ähm im Detail studieren, aber,zum Beispiel, was ja nicht möglich, also wie ich ja vorher schon erwähnt hatte, wir können ja wirklich nicht.
Tim Pritlove
Von oben drauf schauen.
Helmut Dannerbauer
Genau richtig zum Beispiel und klar kann man sich das vorstellen wie die ungefähr ausschaut und ich denke, dassdoch ziemlich gut, aber in diesem Fall, ich kann da wirklich Galaxien beobachten, wie die halt von außen schauen, aber es hängt natürlich auch wieder ab, wie die Galaxy zu uns steht, also zum Beispiel es gibt Steibengalaxien, wo man einfach nur wo die Scheibe direktäh wo wir die ganze Scheibe sehen oder wenn das halt eben der Winkel anders ist, dass man halt einfach nur die äh wie soll ich sagen.
Tim Pritlove
Den Rand sieht, ja.
Helmut Dannerbauer
Ja, genau richtig. Also zum Beispiel bei dieser Sombrero Galaxie ist das ja so.
Tim Pritlove
Genau und man hat's natürlich jetzt auch schön äh gesehen bei derVisualisierung des äh schwarzen Lochs durch das Event Horizon Teleskop, da war's halt auch möglich mal ein schwarzes Loch in der Ferne äh zu beobachten, während wir da so Schwierigkeiten haben in der Milchstraße, ähnliche Ergebnisse zu erzielen, auch wenn es glaube ich das Ziel des äh Projektes ist, da äh irgendwie auch noch voranzukommen.
Helmut Dannerbauer
M 87 und das ist eine elektrische Galaxie.
Tim Pritlove
Wenn man jetzt sozusagen an den ähm,an den Beginn des Universums zurückschaut. Und wir haben ja eine relativ klare Vorstellung davon, ähm wann alles irgendwie begonnen hat. Oder zumindest haben wireinen Zeitpunkt von von dem aus wir äh ausrechnen können, ohne genau zu wissen was vorher warIst auch erstmal egal so. Aber das Universum ist irgendwie sichtbar geworden. Galaxien, Sterne und Galaxien sind äh entstanden,Ähm wenn man jetzt sozusagen so weit zurückschaut, wie wir bisher,zurückschauen können, ist ja klar. James Web wird jetzt demnächst vermutlich die Karten da neu mischen, aber äh ist ja jetzt nicht so, dass man jetzt noch gar nix gesehen hätte. Was kann man diesen,Frühesten Galaxien, die man bisher hat, analysieren können, was man da sehen kann. Was kann man denen ansehen, inwiefern die,anders einfacher sind, also womit fängt es quasi an? Also ab wann ist es überhaupt erst mal äh etwas, dass man eine Galaxie,nennen kann und wie,entwickeln die sich weiter? Ist es dann wirklich primär nur die Verschmelzung mit den äh anderen oder äh entwickeln sich diese Galaxien auch aus sich heraus in irgendeiner Form, ohne dass sie gleich mit anderen zusammenstoßen müssen.
Helmut Dannerbauer
Also jetzt äh bevor also die ersten Galaxien, die man halt kennt oder die man entdeckt hat, ist, da geht man davon aus, dass es ungefähr, ja,400 Millionen Jahre nach dem Urknall halt eben ist und die meisten, die sind haltsage ich mal relativ klein, also klein als die Galaxien, die wir jetzt kennen oder auch im im späteren Universum dann beobachtet haben es, also wie gesagt, es gibteine gewisse Wahrscheinlichkeit, dass die dann kleineren Galaxien miteinander sich verschmelzen, größere Bilder, aber es gibt natürlich auch andere Galaxien, die sich halt dann einfach weiterbilden, aber es hängt halt eben davon ab,Gas vorhanden ist, äh wie ich vorher erwähnt habe, bis in der Umgebung, weil wenn das ganze Gas schon verbraucht worden ist, dann kann man ja keine neuen Sterne mehr entstehen, dann bleibt die Galaxy einfach nur, hatalte Sterne, die kann natürlich weiterhin, weil die Sterne die die gehen da nicht einfach weg. Die bildenZum Beispiel weißer Zwergweite hängt dann eben von der Größe vorne von den Sternen ab, wie die sich halt eben weiterbilden, aber zum Beispiel so eine so eine Galaxie. Kann sein, dass eine Galaxy einfachals als halt einfach weit ist. Also es gibt auch schon im im frühen Universum Galaxien, die halt eben schon.Eigenschaften haben wie äleptische Galaxien, die jetzt nicht eine Elektrizität haben, aber die haben keine Sternentörung mehr. Ja die Sternentörung ist schon vorbei, also es kann schon noch sein, dass durch.Weitere Prozesse halt eben durch Aggression von neuem Gas oder halt dann eben Verschmelzungen mit anderen Galaxien dann eben das wieder angeregt wird dass halt dann eben wieder sich die Galaxie transformiert oder neu Galaxie entsteht. Das muss ja auch nicht sein.Dass sich die Galaxy ändert. Wenn die zusammenstößt, das reicht auch schon, wenn die Galaxien einfach äh sage ich mal vorbeihuschen und so. Da gibt's ja auch schon die die Gravitationskräfte oder die Gezeitenkräfte, die können auch schon dafür sorgen, dass die Galaxien dann verbogen werden oder,Zum Beispiel, wenn man dann halt eben auch ein Galaxinhaufen ist, ist es natürlich die Wahrscheinlichkeit viel größer, dass sich eine Galaxie verändert, also sowohl wo sie sich halt auch befindet, aber auch eben die Form.Dass sie dann zum Beispiel auch äh viel schneller das Gas verbraucht und die Wahrscheinlichkeit vom Zusammenstößen ist halt wesentlich äh größer und das,halt eben auch bezüglich Galaxienentwicklung ist, in in Galaxienhaufen, die sind halt eben in in im lokalen Universum halt eben von elektrischen Galaxien dominiert,Und deswegen ist es halt eben spannend, die sogenannten Vorgänger. Das hatte ich eigentlich gar nicht erwähnt. Äh Vorgänger von elektrischen Galaxien geht man davon ausJa, ein bisschen habe ich erwähnt, sind die Starpirs Galaxie, weil das sind halt eben die Verschmelzungen von zwei Scheibengalaxien und danach bildet sich eine elektrische Galaxie.Deswegen halt dann auch zum Beispiel unser Projekt sucht man dann eben halt mit Teleskopen, die sehr sensitiv sind für Stapesaktivitivs, die Vorgänger von diesen elektrischen Galaxien und dadurch kann man dann eben auch verstehen, wie sich zum Beispiel Galaxienhaufen bilden.Halt eben die Vorgänger von Galaxien zu finden.Die Starbirs, aber wie gesagt durch Zusammenstöße oder einfach weil die in diesem Galaxienhaufen sind, weil's dann auch vielleicht kein Gas mehr gibt, entwickeln die sich weiter. Es gibt halt eben äh verschiedene Möglichkeiten.
Tim Pritlove
Was ist denn deine Lieblings äh Galaxi?Also gibt ja ein paar coole, oder? Die man so besonders ins Herz geschlossen hat, die irgendwie Eigenschaften äh aufweisen.Also diese äh Galaxien zum Beispiel, wie du erwähnt hast, so finde ich irgendwie in der Optik extrem beeindruckend, weil man dann einfach wirklich so einen Ring,in dem in der Mitte irgendwie noch was äh äh sich abspielt, sieht ja so total anders aus als jetzt so eine herkömmliche herkömmliche Spiralgalaxie ist ja langweilig.Magst ja alle, alles.
Helmut Dannerbauer
Ja aber also zum Beispiel ist so ein Galaxy, die finde ich ähm,ziemlich cool, aber es gibt zum Beispiel auch Galaxien, die haben Ring oder ist eine andere durchgeschossen. Ich finde halt einfach auch, wie gesagt, ähm Galaxien, die miteinander sind, zu verschmelzen und die miteinander kollidieren, finde ich halt einfachdie schauen halt einfach ziemlich cool aus. Ja und zum Beispiel was ich auch ziemlich spektakulär finde ist natürlichGalaxien, ähm die halt eben gelenzt sind, wo halt eben die Hintergrundgalaxie von der Vordergrundgalaxie auf Vordergrundhaufen das Licht stark äh verkrümmt ist und schaut halt eben äh ganz anders aus.Finde ich finde ich auch toll.
Tim Pritlove
Das ist ja, das ist ja auch noch mal so ein äh interessanter äh Punkt äh dieses Lenzing,Was erlaubt denn das im Prinzip? Also der Effekt ist ja der, man hat äh eine Galaxie oder irgendwas anderes, was äh extrem viel Gravitation hat im Vordergrund. Kann ja auch ein schwarzes Loch sein.Was auch immer äh und dann man blickt,Sozusagen dahinter auf eine Galaxie, die dann quasi um diesen Punkt am Himmel herum sich kreisförmig anordnen, ne? So kann man sich das ja vorstellen.
Helmut Dannerbauer
Also Kreisförderung gehen Idealfall. Also es nennt sich dann auch Einsteinring. Genau richtig amDaraus kann man eben dann eben schon sagen, wie die Galaxie sage ich mal zur Vordergrundgalaxie platziert ist. Eben wie wie stark die gekrümmt sind oder ob das halt eben ein ein ein sogenannter Einstein-Ring ist oder wenn man nur gewisse Bögen siehtgibt's halt eben auch äh Modelle, mit denen man halt das Lenzing halt eben vorhersagen kann. Dann kam halt eben suchen, ob dann an gewissen Positionen noch andere Galaxien sind. Aber der große Vorteil von diesen ist,Natürlich wollen wir immer höher weiter gegen größere Teleskope, aber mit mit solchen Teleskopen kann man,erreicht man zwei Sachen. Zum einen wird die Helligkeit erhöht und zum anderen kann man auch die räumliche Auflösung erhöhen.Wenn man zum Beispiel einen Faktor 10gewinnt, also,Zum Beispiel das WLT ist ja acht Meter und wenn du jetzt eine gelänzte Galaxie äh damit beobachtest, also ist ja dann,Kommt drauf an, eine Helligkeit nicht, aber mit äh mit der mit der genau mit der räumlichen Auflösung, wer das müsstest, du bräuchtest so ein achtzig Meter Teleskop.
Tim Pritlove
Das heißt, es ist besonders wertvoll eigentlich genau diese Stellen zu finden, wo so ein Lenzing stattfindet.
Helmut Dannerbauer
Genau richtig, also da sind jetzt auch in den letzten zehn, 20 Jahren wirklich in in verschiedenen noch Wellen in Bereichen starke oder na ja starke Bemühungen sind gemacht wordenMan kann auch was über Kosmologie darüber lernenAber andererseits hat man eben auch die Möglichkeit ähm Galaxien einfach besser zu studieren, weil man halt, weil die halt einfach heller sind und die räumliche Auflösung ist einfach größer.
Tim Pritlove
Ich habe gehört, dass da äh vor allem jetzt Machine Learning äh verstärkt zum äh Einsatz kommt, um sozusagen durch die äh durch das Datenmaterial durchzugehen und diese Lensis dann auch automatisch erstmal zu detetieren.
Helmut Dannerbauer
Ja stimmt, also zum Beispiel jetzt kann man das auch im im Kopf äh während uns gerade während unseres Gesprächs gibt ja jetzt eine eine neue Mission, die Dark Energy äh Mission, die das ist ein Satellit, das soll halt eben die die dunkle Energie ähm äh vermessenanhand vor allem zum Beispiel von Galaxienhaufen, da kann man ja eben dann was über die Kosmologie sagen,Und da ist halt eben, sage ich mal, auch ein Produkt von von von diesen Beobachten ist halt eben auch nach äh Landsing-Effekten zu suchen und,Und genau, also ich arbeite jetzt nicht daran an Machine Learning, aber ich habe das aber wie gesagt,halt eben Kollegen, die das halt eben verwenden und allgemein in der Astronomie, Astrophysik, Maschinenlearning hat da wirklich einen starken Einzug erhalten.
Tim Pritlove
Ich meine, es ist wirklich ein sehr angemessenes Tool, weil es natürlich also Machine Learning ist ja im Prinzip eine Technologie äh mit der man,quasi einmal sich auf Daten, die sie auf eine bestimmte Art und Weise zeigen,gut drauf trainieren kann, so nach dem Motto ich zeige dir,tausend Bilder von solchen glänzten äh Sternenformationen und jetzt zeige ich dir nochmal tausend ohne,so und äh das System weiß halt aha, da ist so etwas, da ist so etwas und kann dann so quasi diese Natur, dieser Anordnung in irgendeiner Form detektieren und dann nimmt man halt den großen,Salat und äh Nudel, den einfach durch diesen Algorithmus durch und dann kann er halt sagen, ja guck mal hier, hier, hier, hier, hier.Der, der Wahrscheinlichkeit ist an der Stelle was zu finden und dann hat man ja überhaupt erstmal wieder Ansatzpunkte, auf die man dann eben stoßen kann, sonst müsste man sich da ja alles äh in der nächtlichen Slideshow von Hand äh anschauen und finden und das ist sicherlich auch getan worden, aber ist natürlich extrem langsam im Vergleich zu so einer vollautomatisierten,von daher passt das ja eigentlich sehr gut und wahrscheinlich gilt das generell natürlich auch für die Himmelsbeobachtung in Zukunft, dass solche Werkzeuge zum Einsatz.
Helmut Dannerbauer
Maschinenlearnings natürlich auchÄh wie wie du ihm erklärt hat, das ist ein Tool, aber das ist jetzt auch nicht so, dass man da einfach nur auf den Knopf drückt, dann funktioniert das. Da braucht man auch eine gewisse Expertise und man lernt das auch nicht von heute auf morgen. Also es gibt zum Beispiel Doktorarbeithalt wirklich dann die Leute jahrelang ähm darauf hinarbeiten. Also das ist schon schon gewisse Expertise also.Aber ist halt im Moment also sehr populär auch in unserem Bereich, weil wir halt eben riesige Datenmengen ähm bekommen und da ist halt eben Maschinenlearning eine Möglichkeit, halt eben diese Datenmengung, also sinnvoll durchzuforsten.
Tim Pritlove
Diese Clusterbildung von Galaxien, das würde mich zum,nochmal interessieren. Ist ja auch noch so ein interessantes äh Phänomen und das ist ja auch, sagen wir mal, auch so ein so ein so ein so ein Punkt, an dem einen die.Ausdehnung des Universums auf bestimmte Art und Weise nochmal äh enorm klar äh werden kann oder zumindest äh schwer beeindruckt.Wir schon Probleme damit uns überhaupt äh die Größe der eigenen Galaxie vorzustellen und äh es gibt ja auch noch welche, die nochmal sehr viel größer.Äh sind, auch kleiner als unsere. Ich weiß gar nicht, wo sind wir denn so im im Mittel, so ist unser wird bestimmt wieder so eine Durchschnittsgalaxie, oder?
Helmut Dannerbauer
Hätte ich jetzt schon gesehen. Also ein Trommeldalaxie ist nochmal größer, aber.
Tim Pritlove
Nichts Besonderes.Da ist unsere halt, aber das war's dann auch.
Helmut Dannerbauer
Ja, ich denke also auch von der von der von der Sternemaße und so sind wir schon im mittleren höheren Bereich, würde ich jetzt mal.
Tim Pritlove
Okay, mittleren Hörerbereich ist ja schon mal ganz gut. So und jetzt,haben wir unsere lokale Gruppe, mit dem wir uns irgendwie vereinigen. Es gilt also immer wieder eine weitere Struktur äh in in der dann doch nachweisbar istdass es in irgendeiner Form einen Zusammenhang gibt, dass diese Galaxie nicht isoliert voneinander sind, sondern eben in irgendeiner Form noch,Durch Gravitation ähm einen Einfluss aufeinander haben und das ist ja dann auch teilweise ineinander verschoben, dass also quasi solche Cluster auch überlappen und,nicht unbedingt komplett äh isoliert sind. Äh also inwiefern sind diese Cluster bei deiner Arbeit,inwiefern spielen die eine Rolle.
Helmut Dannerbauer
Richtig, also diese die Galaxienhaufen.Die leben dann auch nicht unbedingt alleine. Also diese Galaxienhaufen können wirklich wieder Teil von einem Supergalaxienhaufen sein. Wie das ja zum Beispiel auch äh ähm mit mit Virgoeben äh der der Fall ist.Und richtig, um zum Beispiel jetzt äh mit dem Spider-Wap Galaxienhaufen, da haben wir jetzt eben auch ähm durch unsere Beobachtung mit dem Teleskop in Australien eben von dem molekularen Gas.Gibt es eben auch eine Interpretationsmöglichkeit, dass es möglicherweise ein ein riesiger, ein super Galaxienhaufen ist,Substrukturen hat, aber das sind jetztnur in Interpretation. Es kann auch sein, dass es einfach nur Filamente halt sind innerhalb eben der der größeren Strukturen, aber das ist eine Möglichkeit, aber es gibt auch zum Beispiel einen jungen Universum Galaxim, also ein super Galaxienhaufen, der nennt sich Hyperion.Ich,Arbeiter an einer Unterstruktur äh sage ich mal dran und da haben halt eben verschiedene Kollegen verschiedene Galaxienhaufen entdeckt in einer ähnlichen Rotverschiebung am gleichen Himmel und eine Kollegin hat dann praktisch gezeigt, eigentlichdie verschiedenen Galaxienhaufen im frühen Universum, die man kennt, die gehören eigentlich alle irgendwie wieder zusammen.Also es gibt tatsächlich auch einen frühen Universum eben auch schon diese diese super Strukturen.
Tim Pritlove
Mh. Okay.
Helmut Dannerbauer
Immer von von ins Große.
Tim Pritlove
Du hast ja ähm hast ja äh auch selber Galaxien entdeckt.Welche Star von deine Liebste? Haste eine? Oder was war die besondersste oder die.
Helmut Dannerbauer
Ja also zum Beispiel vor ein paar Jahren haben wir eine entdeckt und die haben wir Cosmic Albrau genanntja, die hat mir eigentlich ziemlich gut gefallen, eben wie die Struktur. Schaut er tatsächlich wie eine wie eine Augenbraue aus und das fand ich fand ich ziemlich spannend, muss ich sagen. War auch eine gelänzte Galaxie eben.
Tim Pritlove
Okay und ähm den Namen habt ihr dann sozusagen ausgedacht.
Helmut Dannerbauer
Ja genau.
Tim Pritlove
Schreibt man dann ins Paper rein und dann heißt sie so.
Helmut Dannerbauer
Richtig, ich meine genau so ist es. Also das ist ja das ist ja so ein bisschen vielleicht auch so ein so ein Fun-Faktor in unserem Job. Ich meine,Ja, man kann, wenn man was Neues entdeckt,Es gibt natürlich regularien wie Galaxien heißen sollen mit einer gewissen sage ich mal Telefonnummer, oft halt eben verbunden mit den Koordinaten.
Tim Pritlove
Also NGC, irgendwas.
Helmut Dannerbauer
Ja äh das ist jetzt ein Katalog. Das ist einfach nur eine, wie soll ich sagen, Durchnormung, es stehen ja nix, die Koordinationen drin, aber zum Beispiel in meiner Doktorarbeit. Da hatte ich dann eben paar Galaxien entdeckt,Haben wir jetzt auch gar kein Nickname gegeben, sondern die haben wir einfach MMJ und dann die Koordinaten. MM halt für Millimeter und halt eben für den für den ähKoordinatenkatalog, den man haltverwendet ähm wurden die halt so bezeichnet, aber später in gewissen Kollaborationen hat man haben wir halt einfach angefangen Spitznamen zu vergeben haben. Macht halt einfach Spaß und,teilweise einen Titel im Apps direkt hin und manche solche von diesen Spitznamen, die Bürgern sich dann ein, andere Leute benutzen das auch.In anderen Fällen nicht. Es gibt da zum Beispiel auch so eine gelänzte Galaxie, die heißt dann das Saurens Ei. Weil die halt eben so wie von dem Herr der Ringe eben ausschaltet und achhabe ich jetzt vergessen so vor kurz, ne, weil der mich mit Lieblingsgalaxien gefragt hat, dass jetzt haben wir eine Galaxie entdecktähm wir haben ja auch einen Artikel veröffentlicht mit einem ehemaligen Studenten von mir. Das war seine Masterarbeit. Und die hathat mein Student dann eben Seepferdchen genannt. Also es nennt sich jetzt Kosmic Sea Horse.Und also wenn man jetzt einfach nur so hinguckt, ist es ein bisschen schwierig, das Seepferdchen zu entdecken, aber wenn man dann eine Illustration hat, ja, dann sieht man das schon, aber,Genau, also.
Tim Pritlove
Aber diese Namen fließen nicht dann irgendwie mit in so einen Katalog äh Eintrag mit ein. Dass das dann auch wirklich mal so festgelegt wird, dass das der Spitzname ist. Der hält sich einfach nur, weil Leute den benutzen.
Helmut Dannerbauer
Ja oder richtig, wir sind natürlich dann auch kürzer zu sagen als zu sagen, äh das ist die Galaxy SMMJ, eins, zwei, drei, vier, fünf, sechs, sieben,sagt man halt dann und das sagt auch viel mehr was, als wenn man dann irgendwie eine Telefonnummer äh verwendet. Das ist halt einfach einprägsamer und.
Tim Pritlove
Aber es gibt keine Möglichkeit, einen richtigen Namen in irgendeiner Form anzumelden, so wie Astriden und so weiter äh einen Namen haben. Es gibt keine Dannabbauer äh Galaxie oder so. Das wär's auch mal.
Helmut Dannerbauer
Ja genau ich dachte du willst darauf hin. Ja aber was wir mal gemacht haben ist vor ein paar Jahren, also eben auch bei diesen bei diesem äh Galaxienhaufen in in in Formation nenne ich den immer, also diesen Galaxieprotocluster, den Spider-WapDa haben wir dann eben die Galaxien, die wir dann im Millimeterbereich haben wir dann halt auch eine durchnummerierung halt gegeben von 1 bis 16 und die haben halt dann eben DKB genannt.DKB hat halt was mit den äh Familiennamen von den drei Erstautoren zu tun. Und so haben wir uns halt verewigt und,Wir sind tatsächlich auch in anderen Papers. Es sind halt dann die Galaxien genannt worden. Die Galaxie, wie ich auch gesagt habe, natürlich auch eine Offiziellenname, weil man muss.Ebenzu Katalogisierung muss man halt eben offizielle Namen geben von der IHO wurde das vorher festgelegt aber manche Kollegen benutzen halt dann eben den Spitznamen.Wie gesagt, das ist halt äh Teil von unserer Arbeit. Das ist halt so ein bisschen Fahndung. Wie gesagt, manche Namen bürgern sich eher ein und und manche halt weniger.Wie auch die Antenne Galaxy, die ich halt eben äh vorher genannt habe. Also wenn du zum Beispiel googlen würdest, würdest du sofort was finden.
Tim Pritlove
Die du auch entdeckt hast.
Helmut Dannerbauer
Die habe ich jetzt nicht entdeckt. Die wurde schon von anderen Leuten entdeckt, aber.
Tim Pritlove
Okay, aber wie viel hast du denn entdeckt? Was fällt denn so raus äh über die ganze Zeit?
Helmut Dannerbauer
Ach, das habe ich jetzt nie gezählt, also weiß ich nicht.
Tim Pritlove
Hunderttausend.
Helmut Dannerbauer
Hundert vielleicht oder so, also.Also bei mir ist es ja auch so, es gibt ja zwei Möglichkeiten Studien durchzuführen. Eine eine ist halt eben eine statistische.Große Service macht, wo man hunderte, tausende Millionen von Objekten hat,Ein anderer Punkt ist, was halt ich eher mache ist deswegen bin ich jetzt auch bei einer kleineren Zahl von hundert oder so.Ähm dass ich mir halt eben ähm ein Objekt halt dann genau anschaue,Also ich habe halt eben auch viele wissenschaftliche Publikationen auch mit Kollegen, wo ich halt ein Objekt genau anschaue und dann wirklich,detailliert halt eben diskutier, aber es gibt halt eben auch Möglichkeiten über Statistik halt eben, dann über Populationen, zum Beispiel eben von Galaxieren dann auch eben Schlussfolgerungen zu ziehen.Das war halt eben meiner Branche, also damals, wie ich mit meiner Masterwelt angefangen hatte, das war eine der ersten Fragen, die man halt eben von meinem Betreuer gestellt wurde.Was möchte ich machen? Eher Statistik odereinzelne Objekte, aber mittlerweile, wie sich eben, wie du auch mitbekommst, immer größere Datenmengen durch Musterungen und so. Also ich bin jetzt auch in in Projekten,dabei, wo man Millionen von Galaxien ähm beobachten, von daher auch die Frage jetzt, wenn du mich in ein paar Jahren fragst, ist es wahrscheinlich nicht mal hundert, sondern ist es dann eine Eins mit viel mehr Nullen, weil,jetzt auch im Moment in einem Service mit dabei bin, der nennt sich Sharks.Service, den den ich auch leite, einen Infrarotservice und da gibt's äh Vorhersagen von meinen Kollegen, dass wir halt 20 Millionen Objekte beobachten. Also das heißt jetzt nicht, dass alle diese Objekte neue Objekte sind, aber,dass wir halt eben auf äh über dreihundert äh äh wie sagt der Bogen gerade halt eben 20 Millionen Objekte im im nahen Infraroten beobachten undallein in einer Aufnahme, hm sind schon 500.000 Objekte da, also von daher könnte ich jetzt so sagen, ich habe vielleicht auch schon viel, viel mehr entdeckt, aber.
Tim Pritlove
Okay, aber ich verstehe schon, aber du äh im Prinzip möchtest du gerne eine emotionale Bindung äh mit mit der Galaxy äh der einzelnen Galaxie aufnehmen, damit man weil man die halt so gut sich angeschaut hat.
Helmut Dannerbauer
Ja, das das ist ein guter Punkt. So sehe ich das auch ein bisschen, wenn man dann arbeitet man halt eben an einem Objekt wirklich ähm ja viel dran, um,klar baut dann ob man will oder nicht halt wenn die gewisse Beziehung auch von daher tendiert man da auch immer zu sagen das ist meine, deine, wie auch immer Galaxy, aber das ist natürlich nicht meine deine, sondern das ist halt äh von allen und so aber ähm.
Tim Pritlove
Na ja, ich denke, wenn man irgendwo das erste Mal hingeschaut hat, dann äh kann man sich auch schon ein bisschen was drauf einbilden. Ja, Helmut, vielen Dank für die Ausführung über die Arbeit.
Helmut Dannerbauer
Ja, vielen Dank. Ähm,Auch dir, Tim, dass du mich da eingeladen hat und das hat wirklich äh super viel Spaß gemacht über mein Themengebiet äh zu sprechen und hoffentlich konnte ich jetzt auch also junge Zuhörer motivieren, Zuhörerinnen motivierenauch Astrophysik anzufangen und vielleicht auch sogar eine wissenschaftlichere Karriere einzuschlagen.
Tim Pritlove
Eine Menge zu holen in dem Bereich.
Helmut Dannerbauer
Nee, also es ist halt wirklich auf alle Fälle, also die nächsten Generationen, die wären wirklich tolle Teleskope zur Verfügung haben,Und ja, ist halt einfach auch spannend, weil was man ja nicht vergessen darf, ist also man man.Die seine Leidenschaft, was man hat, also wenn man ein junger Mensch war, Sternenhimmel interessiert einen, konnte man wirklich tatsächlich zu seinem Beruf ähm ja verwandeln, man man ist seine Leidenschaft, das,der Beruf und dafür äh bezahlt zu werden ist jetzt denke ich mal auch nicht schlecht, also es kommt mir so ein bisschen so vor wie Sportler oderoder oder oder Künstler oder so. Das ist halt auch so ein bisschen spannend, dass man halt sich auch ein bisschen selber verwirklichen kann und dass ich halt eben auch heute die Möglichkeithatte so ein bisschen zu erzählen, was halt auch unser unsere Arbeit ist, dass es halt nicht nur ist ähm ein Bild äh zu machen, sondern dass halt eben davor oder danach auch verschiedene Prozesse eben dazu gehören, dass man halt.Dann zu den wissenschaftlichen Schlussfolgerungen.
Tim Pritlove
Super. Vielen Dank und ähm vielen Dank auch fürs äh Zuhören. Hier bei Raumzeit. Ihr wisst, bald gibt's wieder weiter.

Shownotes

Glossar


RZ101 Exoplaneten-Beobachtung

Die Beobachtung von Extrasolaren Planeten wechselt von der Entdeckungs- in die aktive Erforschungsphase

Es ist noch nicht so lange her und Exoplaneten waren eine fundamentale Neuigkeit und wichtige Entdeckung. Mit der Zeit ist aber die reine Entdeckung und Zählung dieser Objekte nicht mehr ausreichend: man rückt ihnen mit zahlreichen neuen Weltraumteleskopen auf die Pelle und gewinnt zunehmend neue Erkenntnisse über andere und letztlich auch unser eigenes Sonnensysteme.

Dauer:
Aufnahme:

Hans Jörg Deeg
Hans Jörg Deeg

Ich spreche mit Hans Jörg Deeg, Wissenschaftler am Instituto de Astrofísica de Canarias und Urgestein der Exoplanetenforschung. Wir sprechen über die etablierten Beobachtungsmethoden und Astroseismologiebei Exoplaneten, über die bekannten Planetentypen, die man bisher gefunden hat, die Ergebnisse bisheriger Missionen und die Techniken und Forschungsziele aktueller und kommender Weltraumteleskope. Zum Abschluss schauen wir noch auf ein paar skurille Sonnensysteme und erläutern, warum ein neunter Planet in unserem Sonnensystem oder auch ein Planet wie Tatooine aus Star Wars alles andere als unwahrscheinlich sind.


Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Tim Pritlove
Hallo und herzlich willkommen zu Raumzeit, dem Podcast über Raumfahrt und andere kosmische AngelegenheitenMein Name ist Tim Prittlaff und ich begrüße alle zu einer weiteren Sendung, für die ich äh eine Reise angetreten habe. Es ist mal wieder Zeit für eine kleine Podcastreise auf der ich gleich mehrere Sendungen hintereinander aufnehmen möchte.Mich hat die Reise geführt nach Teneriffa. Das ist auch ein sehr interessanter äh Ort für Raumfahrt und für die kosmische äh Forschung ist.Heute möchten wir ein weiteres Mal das Thema der Exoplaneten, der Exo solaren Planeten aufgreifen. Das Thema hatten wir hier schon, ein paar Mal, vor,sechs Jahren haben wir äh hier Heike Rauer gehört, die äh da einen Überblick gegeben hat. Jüngst waren die erdähnlichen Exo Planeten auch nochmal im Fokus, Raumzeit 96 mit Lena Nuak und natürlich auch die,Folge 99 über äh Kiops, ein Satellit der in der Planet-Forschung auch zu neuen Erkenntnissen äh führen soll. So und,Heute äh machen wir nochmal so,Roundup, weil dieser Bereich sich natürlich extrem schnell entwickelt hat und ähm viele neue Erkenntnisse dazukommen und äh aus meiner Perspektive sinnvoll da auch nochmal einen größeren Blick drauf zu werfen,Dafür begrüße ich zunächst einmal meinen Gesprächspartner heute nämlich Hansjörg Deeck. Hallo.
Hans Jörg Deeg
Ja guten Tag äh Tim.
Tim Pritlove
Ja, herzlich willkommen bei Raumzeit. Ich hab's schon gesagt, wir äh sitzen hier in Teneriffa. Du wohnst hier. Du bist hier auch schon sehr, sehr, sehr lange, ne?
Hans Jörg Deeg
28 Jahre.
Tim Pritlove
20 Jahre und ähm bist hier.Stationiert beim IAC, dem Instituto Astrophysiko de Canarias, habe ich richtig ausgesprochen, hervorragend. Genau und ähm ja vielleicht zu Beginn.Ähm würde mich natürlich mal interessieren, wie's dazu kam, das so hier gestrandet bist überhaupt in dieses Themenfeld überhaupt in die Wissenschaft gekommen bist. Ähm was.
Hans Jörg Deeg
Ja, das wareine lange Reise letztlich äh über mehrere Stationen erstmal zu mir selber. Ich bin in Bad Mergentheim im Norden von Baden-Württemberg aufgewachsen, habe die ersten Jahre im Studium dann in Würzburg, Physik studiertund bin 1983 über ein Austauschprogramm nach New York State gekommen zu University of Buffalo,äh wo ich äh dann zum Schluss,bleiben wollte, weil mir das äh Studienumfeld besser gefallen hat. Die Professoren hatten bessere äh Kontakte zu den Studenten. Es war viel persönlicher alles und da habe ich dann letztlich einen Masters in in Physik gemacht,der mir dann auch ermöglicht hat, nach äh Doktoräh Studiengängen in den USA mich umzusehen. Äh da habe ich dann einen bekommen, einen Platz bekommen in Albaki in New Mexiko.Wo ich dann äh sechs Jahre war,und eine Doktorthesis gemacht habe, die aber in einem ganz anderen Feld war, nämlich das verwendet hat, was dort ist und dort ist das äh Very Large äh Rey, was äh nach wie vor das äh.Eines der größten Radioteleskopes und habe eine Doktorarbeit gemacht über Galaxien äh und Radioobservationen und auch äh optische Beobachtungen über, weil wir ein kleines Teleskop auf dem Berg dort haben.In meinem ersten Post ähm bin ich dann in Kontakt gekommen über einen Kollegen, der mich sehr beeinflusst hat.Lorenz Stoy vom City Institut in in äh Kalifornien. Der war zu Besuch in Rochester, hat einen Vortrag gegeben und ich habe mich mit ihm unterhalten etwas und er hat mich eingeladen an einem Projektteilzunehmen, wo wir die sogenannten Transitz suchen. Damals, das war neunzehnhundertdreiundneunzig, war noch kein normaler Planet bekannt.Und das war natürlich eine etwas weit hergeholte Sache mit sowas anzufangen. Aber als Nebenprojekt habe ich das dann angefangen. Wir haben einen äh Doppelstern äh angeschaut,den heißt.Und äh in einem Doppelstern wissen wir, ein veränderlicher Doppelstern oder äh ähm eine Clipsink Doppelstern, äh dass die diese Sterne in ein ein die äh die ähm Bahnebene mehr oder weniger zu uns äh insparallel zu unserem Blickfeld ist und man kann annehmen, wenn es um so einen äh Stern äh Doppelstern einen Planet gibt, einen sogenannten Zirkum, äh binären Planet,um beidebeide äh Komponenten des Doppelsterns herumkreist, dass der wahrscheinlich auch in der mehr oder weniger in der gleichen Bahnebene liegt und deshalb Verdeckungen äh zu dem Bord-Doppelstern produziert. So haben wir angefangen neunzehnhundertdreiundneunzigin einem Projekt, was er damals gestartet hat und hat versucht äh Mitarbeiter oder.Oder äh weitere Kollegen zu finden, die ihm dabei helfen und ich habe ihn dann angefangenäh von unserer kleinen lokalen Stirnware in äh New York State damals als erster PostockBeobachtung von diesem Doppelstern aufzunehmen und gleichzeitig waren's sieben, acht beide Kollegen in Europa, in den USA und einer in Russland äh und in Korea auch mit dem gleichen Projekt beschäftigt.Haben wir insgesamt letztendlich über 1000 Stunden Beobachtungszeit aufgenommen. Es ging über mehrere Jahre dieses Projekt und,es war das erste Transitbeobachtungsprojekt überhaupt.Wo wir diesen Stand genau beobachtet haben, dass letztlich keine keine Detektion gefunden hat, keine klare Detektion von einem äh Transit aber es hat äh die Limits gezeigt von der Methode, wenn man so einen Paper dann geschrieben, wo wir zeigen konnten, dassPlaneten, die größer wie zweieinhalb Adradien sind, um diesen Doppelstern nicht äh nicht wohl nicht existieren, ne.
Tim Pritlove
War jetzt alles noch in den USA?
Hans Jörg Deeg
Das war zumindest der Anfang davon war in den USA 1993 fingen wir dies an.Ich war nicht übermäßig glücklich in diesem ersten Postdoc und habe mich daher umgesehen nach anderen undDank eines Dia-Vortrags, die mir meinen Vater mal gezeigt hat über La Palma habe ich mich motiviert beim Instituto der Astrophysiker de Canarias einen Antrag zu stellen.Und hatte Glück, dass äh der angenommen worden ist und so habe ich 1994 hier äh beim nennen das kurz IAC äh angefangen,Äh und habe anfangs noch äh eigentlich das Thema meiner Doktorarbeit weitergemachtäh was eben Galaxien waren und optische BeobachtungenAber dann passiert es eben, dass 1995 die erste Entdeckung eines Exoplanetens von äh äh bekanntgegeben worden ist. Der bekannte einundfünfzig äh Pack von ähm Michel Major und die Dicke los.Und das hat natürlich enorm motiviert und in den nächstenJahren äh zwei, drei Jahren habe ich dann äh das die Exoplanetenforschung in mein Hauptthema verwandelt und die das andere Thema äh äh langsam zurückgeschraubt.
Tim Pritlove
Weil das war spannend.
Hans Jörg Deeg
Das war spannend, da war was neu, da lief was, das war da die Presse sich interessiert für die Öffentlichkeit statt äh Radio Speck drin von Galaxien erklären zu müssen, wozu die gut sind.
Tim Pritlove
Langweiliges Zeug.
Hans Jörg Deeg
Waren die Exoplaneten natürlich viel, viel interessanter, ja, ja.
Tim Pritlove
Gut, ich meine, wenn man da noch so am Anfang äh der Karriere steht, dann ist es natürlich super, ne? Wenn man dann irgendwie was hat, äh wo man sich drauf stürzen kann. Genau, jetzt haben wir's äh auch noch mal betont, 1995 war die erste,Bestätigung muss man ja sagen, eines Planeten, dass man sich sicher war, gesucht wurde ja schon lange danach. Mhm. Also das war ja in dem Sinne nichts Neues und so ein bisschen wie bei den Gravitationswellen.Ist das so äh der Teil der ähm kosmischen Forschung, wo man sagt so, müsste es eigentlich geben? Wir sind uns ziemlich sicher, wir haben's bloß noch nicht gesehen. Irgendwann werden wir Erfolg haben, aber keiner kann genau sagen, wann's denn nun endlich soweit ist.
Hans Jörg Deeg
Ich glaube nicht, dass die Situation wirklich so war. Es gab schon auch Thesen, dass zum Beispiel unser Sonnensystem sehrein sehr seltenes äh System wäre. Äh.Dass vielleicht nur einer zehntausend oder eine 100.000 Pfund Normalstern äh hätte und dass es daher vielleicht nur sehr sehr wenige Planeten hätte. War durchaus möglich. Äh er war keinenicht die vorherrschende Thesis, aber es war eben wirklich vollkommen unbekannt, wie viele Planeten äh es ums um andere Sterne gibt oder welche Fraktion von Sternenplaneten haben, ne. War wirklich eine eine große Unbekannteund äh es war ja dann auch die ersten Planeten waren eine Klasse von Planeten, die keiner erwartet hat, die sogenannten Hot Tschupiters.Was eben äh große Jubetop-Planeten sind, Jupitergröße, Planeten, die in wenigen Tagen um den äh Zentralstand kreisen. War völlig unerwartet,und da gibt es ja auch die Geschichte, dass äh Michelle, Major und die Delos haben ihre Daten ausgewertet währenddessen die Konkurrenzteame aus den USA,äh die haben schon Jahre vorher gleiche Beobachtungen gemacht, aber haben nicht erwartet, dass so es so was gibtund haben da ihre Daten eigentlich erstmal anlaufen lassen mehrere Jahre. Sie haben gedacht, sie müssten länger warten, bis sie Planeten mit mehreren Jahren oder einem Jahr Periode und längere.Periodisches Signale zusammenbekommen und haben daher ihre Daten nicht ausgewertet. Wenn sie ihren ersten Teil ihrer Daten ausgewertet hätten,schnell gesehen, dass sie auch äh ja Signale sehen von diesen Hot Jupiters, wo man eben mit ein paar Tagen,paar Wochen Beobachtung schon ein klares Signal sieht äh und sie hätten wahrscheinlich vielleicht fünf Jahre vorher schon äh die gleiche Entdeckung bekanntgeben könnten, aber das war eben wirklichäh dass sie überhaupt nicht in Betracht gezogen haben, dass es solche Planeten geben könnte.
Tim Pritlove
Jetzt hast du schon so ein so ein Stichwort genannt, ähm damit kann man auch mal einsteigen, vielleicht diese ganzen Planetentypen, die jetzt,quasi neu geboren werden. Wir sind halt extrem geprägt natürlich von unserem eigenen Sonnensystem. Ist noch gar nicht so lange her. Da war halt so generell so dieses ja, es könnte andere Planeten geben, aber wir wissen nicht wie viele. Grad so diese Frage der Einzigartigkeit,äh des Sonnensystems, weil der Mensch lag ja bisher mit seiner Einzigartigkeit irgendwie immer ein bisschen daneben. Ähm jetzt geht's halt erstmal um die äh Planeten. Welche Arten,Planeten unterscheidet man denn jetzt äh mittlerweile? Also das Beispiel mit dem ho,Jupiter, ich weiß nicht warum der hot ist, aber die sind vor allem Gasriesen die aber extrem groß sind, also noch größer eigentlich sind.
Hans Jörg Deeg
Die sind ungefähr mehr als hat schon wieder heutzutage wird jeder, der ungefähr zwischen 0,siebenäh Jubiterradien und die Maximalgröße sind knappzwei. Das hat was zu tun mit der ähm internen Hydrodynamik, äh dass Planeten letztlich nicht größer werden können wie ungefähr.Knapp zweiäh Jubiterradien und es gibt nur sehr wenige, die Größe wirklich wie eins Komma drei, 1, 4 Jubiterradien sind. Das sind dann meistens junge äh Systeme, die sich noch noch äh noch kontrahieren.
Tim Pritlove
Wenn sie größer werden, werden sie auch langsam Sternkandidaten sozusagen.
Hans Jörg Deeg
Wenn sie größer werden, müssten sie in einem größeren Maße haben, aber es es gibt letztlich ein sogenanntes, das ist ein Plateau, wenn man die mit die immer mehr Masse rein zu zu addiert ähes ein Plateau, das bei 1 Komma etwas äh Jubiterradien liegt und das geht von also eineretwas unter einer Jubitermasse bis zu 70, 80 Jubitermaßen, wo man dann in der Tat schon von roten Zwergsternen sprechen.Die ungefähr alle mehr oder weniger die gleiche Größe haben. Daher hilft die Größe von so einem äh Objekt auch nicht allzu viel, um sie zu klassifizieren,Äh im Falle der Hot Jupiters nennt man sie Hot, weil sie eben in wenigen Tagen um den Zentralstern gehen und daher Temperaturen haben, die,oberhalb von sieben, achthundert Kelvin liegen und bis zu knapp dreitausend äh.
Tim Pritlove
Das liegt jetzt nicht an der Geschwindigkeit der Rotation, sondern an der Nähe.
Hans Jörg Deeg
An der Nähe zum Stern liegt das ja eindeutig ja jaweitere Systeme, die interessant sind, die gefunden worden sind, sind ähm die die auch sehr verschieden zu unserem Sonnensystem sind, äh sind Systeme, die später gefunden worden sind äh von kleinen äh Planeten.Auch relativ nah um den Zentralstirn.Aber in der Regel nicht nur einer gefunden wird, sondern vier, fünf, sechs Planeten, die alle auf relativ nahe zueinander gelegenen Hobbits sind.Und äh zum Teil auch manchmal.Die Stabilität von denen etwas fragwürdig ist. Das sind die kompakten äh terrestrischen Systeme. Die wurden äh mit der Kepler-Mission später gefunden,ja den 2tausendzehner, die sind wirklich äh verschieden.Kennen dann einige sehr große äh oder sehr massive Planeten, wie die auch verschieden sind zu unserem Sonnensystem auf äh,Perioden, die von wenigen Tagen bis zu einigen Jahren gehen könntenAndere Planeten äh sind dann die einzige Klasse, die schon von 1995 bekannt waräh sind die sogenannten Planeten, die äh um Pulsare-Kreisen, das heißt Sterne, die kollabiert sind, die schon ihre Supernova-Explosion hatten, äh äh oder Überreste von Sternen.Wo auch nicht ganz klar ist, ob dieser Planeten wirklich Planeten sind, die es schon vor der Supernova-Explosion gab,oder ob die sicherst später aus Überresten von den Sternen äh gebildet haben. Das ist nicht ganz sicher. Um's vielleicht etwas zusammenzufassen,unser Sonnensystem gibt oder Sonnensystem ähnliche Systeme gibt es sicherlich,in guter Menge, aber das Problem ist nach wie vor, dass dieses Systeme sehr schwer nachzuweisen sind. Bekannt sind im Moment um einige andere Sterne,Planeten, die mehr oder weniger ähnlich sind wie unser Jupiter in Größe und auch in der Umlaufbahn, in der Umlaufdauer, beim Jupiter sind es elf Jahre,und ähnlich könnte man sagen, sind vielleicht Umlaufdauer von fünf Jahre bis 15 oder 20 Jahre. Da gibt es mittlerweile einigeDetektionen. Das Problem ist allerdings, dass man dann nur diesen Jupiter kennt oder Jupiter ähnlichen Planeten, aber nicht die anderen.An die kleineren Planeten in solchen Systemen ranzukommen, lässt es sich, das lässt sich fast nicht mit der sogenannten äh Methode machen.Sondern da brauchen wir und die können wir noch erzählen, wenn wenn es.
Tim Pritlove
Ich würde ähm gucken wir gleich noch drauf.
Hans Jörg Deeg
Wünscht ist, aber die brauchen die Transit-Nachweise.Den kleineren Planeten und solche hat es bisher noch nicht wirklich äh haben sich finden lassen. Aber es gibt dazu Projekte über zu denen wir noch kommen werden.
Tim Pritlove
Mhm. Also ähm um vielleicht mal so diese Planetentypen nochmal gehört äh zu haben, also der Hot Jupiter, dann hatten wir diese kleineren sind das ja.Also die Steinplaneten also gilt denn generell diese grobe Unterscheidung mit, es gibt so diese Sternpaletten und es gibt die Gasplaneten, wie wir das bei uns im Sonnensystem ja so schönauf Kreise, die existiert auch weiterhin, das sind im Prinzip die großen zwei Typen, die man erstmal unterscheiden muss und dann kommt's äh darauf an, wie nah sind die jeweils an der Sonne, was die Hitze betrifft eben dann natürlich die Größe et cetera.
Hans Jörg Deeg
Genau, genau. Äh das sind so die zwei wesentlichen Gruppen. Wir haben wir sagen typischerweise noch saturnähnliche Planeten. Das sind Gasplaneten, die so wie der Saturn und der Uranus so null Komma drei, 0,4 Jubiterradien groß sind.Außer von denen, die auchGasplaneten letztlich sind, können wir die meisten Planeten relativ klar als äh als terrestrische Planeten, also äh solide Planeten äh klassifizieren oder als Gasplaneten wollen.Großteil des Volumens zumindest äh aus Gas besteht,Es gibt einige nicht so viele Fälle, wo wo die Dichte und die Größe etwas unklar ist. Äh gibt dann manchmal Hypothesen, dass die vielleicht hauptsächlich aus Flüssigkeit, aus Wasser oder äh aus was anderem bestehen.Aber die allermeisten lassen sich klar klassifizieren,und äh sehr interessant ist auch, dass die die Kurzperiodischen Planeten, die relativ nah an dem Zentralstand sind, da gibt es wirklich,nur noch praktisch nur noch zwei Gruppen, die sind entweder,terrestrische Planeten oder erheblich größer und jubiderähnliche Pläne. Es gibt nur sehr wenige zwischendrin äh und was wahrscheinlich passiert ist, dass die die äh,Jupiter ähnlichen Planeten, dass die,früher oder später verdampfen. Das Gas äh wird wird äh äh verdampft ja von dem Planet und er wird immer kleiner und zum Schluss bleibt eben noch der Kern übrig, der dann äh so ein bis zwei Erdradien groß ist.
Tim Pritlove
Kurz periodisch sagen und von Jahren, also.
Hans Jörg Deeg
Mhm. Okay.
Tim Pritlove
Meinen wir jetzt unsere Jahre im Sinne von wie wir sie äh beobachten oder Jahre im Sinne von was für diesem.
Hans Jörg Deeg
Wenn ich ja sage, beziehe ich mich immer auf ein,und Kurzperiodisch ist für uns, äh sagen wir mal, unterhalb von zehn, 15 Tagen. Es hängt etwas am Stern ab. Ein ein massiver Stern ist natürlich heißer.Und äh ein Planet vielleicht äh eine zwanzig, 30 Tagen wäre auch schon sehr, sehr heiß und damit kurz periodisch werden. Es sind um einen äh roten Zwergstern und einen sogenannten Emstern,wer eine eine Periode mit 20 bis30 Tagen sogar in der sogenannten habitablen Zone, das heißt in der Zone, wo die Temperaturen äh angenehm sein könnten für für die Entwicklung von Leben auf dem Planeten.Daher bei Emstern Kurzbayerische Planet einer mit fünf Tagen bis bis praktisch ein halber Tag war Periode.
Tim Pritlove
Also der Merkur wäre selber gar kein Kurzperiodischer in dieser.
Hans Jörg Deeg
In der wer am Limit würde ich sagen ja na ja na ja.
Tim Pritlove
Also wenn man.
Hans Jörg Deeg
Kennen keinerlei Merkur ähnlichen Planeten, weil die sind im Moment wirklich äh noch noch nicht detekt, die aber.Weil die die Periode von groß um ja für Radialgeschwindigkeiten in Entdeckung ist der Merkur hat er zu geringe Maße.Und äh um ihn mit Transit zu sehen, ist er schlichtweg zu klein vor der Sonne, äh kann im Moment nicht nicht nachgewiesen werden.
Tim Pritlove
Okay, also es gibt.Es gibt die Steinplaneten, es gibt die Gasplaneten, aber man hat jetzt, wenn man die Typen sozusagen sich mal so vorstellt, mehr also eine etwas größere Matrix, wo dann halt die anderen äh Faktoren mit reinkommen,Nähe zu Sonne, die entsprechende äh Periode, wobei man wahrscheinlich generell davon ausgehen kann, umso näher dran an der Sonne, umso schneller äh läuft das Ding auch,Nur, dass wir halt jetzt andere Geschwindigkeiten sehen, als wir es jetzt in unserer Skala hier,gewohnt sind, sodass man fast glauben könnte, bei uns geht's relativ langsam äh zur Sache, aber wie das so insgesamt im Mittel äh ist, kann man glaube ich zu diesem Zeitpunkt auch noch gar nicht sagen, da fällt man wahrscheinlich noch nicht genug.
Hans Jörg Deeg
Ja, also ist eine der großen Unbekannten, ist wirklich äh nach wie vor die die typische Statistik von den Planeten,um die sagen wir mal so einen ähnlichen Sterne,Wir wissen heutzutage, dass äh ungefähr die Hälfte zumindest aller sonnenähnlichen Sterne wahrscheinlich Planeten hatEs ist sind Hochrechnungen von von äh Beobachtungen über Transitz, aber diese Planeten sind typischerweise verschieden zu unserem Sonnensystem, wenn es wirklich sonnensystemähnlichePlanetensysteme,wie, wie schon gesagt habe, kennen wir nur sehr wenige und äh der ihre, wir nennen das immer äh Bandens äh ähm,äh Anzahl, Anzahl äh ist nach wie vor recht ungewiss.
Tim Pritlove
Und auch die Vorstellung glaube ich.Dieses äh Jahr, wenn man so ein Sonnensystem hat, dann ist es einfach sehr viel Wahrscheinlichkeit, dass so am Anfang kommen so ein paar Gestaltungsplaneten und dann kommen die ganzen bei denen, weil genauso ist es ja bei uns. Aber so diese Reihung, diese einfache Struktur findet sich jetzt auch so grade nicht oder.
Hans Jörg Deeg
Doch die findet sich äh,äh es es wird immer so sein, dass zumindest die die Planeten, wenn die noch in der Position sind, wo sie sich gebildet haben am Anfang zusammen mit dem Stern in einem sogenannten bruttoplanetarischen äh Scheibe oder DISQ ähda ist es immer so, dass äh innerhalb eines gewissen Limits äh äh die sich nur,relativ nah am Stern sich nur äh Gesteinsplaneten äh terrestrische Planeten bilden können und weiter außen bilden sich die die Gasplaneten. Das ist also vorgeschrieben praktisch,von der von der Entstehungsgeschichte und von den Temperaturen, die in verschiedenen Abständen vom vom Stern eben herrschen.Was dann passieren kann und da passiert dann viel nach der originalen äh Bildung des Planetensystems ist, dass sich ähÄh die Planetenposition ändern können. Das ist die sogenannte Migration und da gibt es viele Theorien dazu und insbesondere die sogenannten Hot Schuhe, dass die eben keiner erwartet hatten, hatte,äh sind offensichtlich Fälle, wo wo ein Planet noch während der Bildung als noch die die Scheibe noch,was existiert hatte, dass diese Planeten von außen nach innen eben äh migriert sind und in ihrer Position jetzt äh mitBahnen von wenigen Tagen, äh um den Stern und mit Oberflächentemperaturen von über 1tausend Grad eben, dass die jetzt dahin hingelangt sind. Da gibt es äh verschiedene Theorien dazu, wann das passiert und wann das nicht passiertUnd das hängt sehr wahrscheinlich davon ab, welche anderen Planeten sich noch gebildet haben. Zum Beispiel, wenn sich statt einem Jubiter in unserem Sonnensystem zwei oder drei mehr oder weniger in dieser Entfernung gebildet hätten,mehr wahrscheinlich einer der innerste von denen, wer auch äh nahe zum Hauptstern äh migriert,und hätte ihn bei diesem Weg dann wahrscheinlich auch die anderen Planeten aufgenommen, die kleineren Maßerde Venus,und wir hätten auch ein sogenanntes Hot Dog. Das ist.
Tim Pritlove
Warum warum fangen die an zu migrieren? Also ich hätte jetzt bis eben noch gedacht, da schlägt dann vielleicht irgendwas ein und dann ändert er die Bahn, das wäre ja sicherlich ein Ereignis.
Hans Jörg Deeg
Eine Einschläge sind's in der Regel. Meistens sind's äh wir nennen das immer ähm Wechsel oder Kapitänsbeziehung zwischen diesen ähm diesen äh anderen Planeten, die da auch sind und eben auch massiv sind.
Tim Pritlove
Quasi so eine Aufschwingung.
Hans Jörg Deeg
Eine Aufschwingung, ja eine Wechselwirkung zwischen diesen und die Sache ist eben heute, wir können die Hot Jupiters relativ leicht nachweisenUnd da wissen wir wirklich ziemlich sicher, dass ungefähr ein halbes Prozent aller normalen Sterne äh einen sogenannten Hot Jupiter hat. Das heißt, die sind nicht allzu häufig, das wissen wirWir können aber in der Regel äh nur sehr selten die anderen Planeten nachweisen, weil diePerioden haben von Jahrzehnten äh und länger und die lassen sich nur nur sehr schwer im Leben finden. Daher kennen wir nur den Hot Tube, aber nicht die anderen.
Tim Pritlove
Okay, jetzt haben wir mal so einen kleinen äh Überblick äh bekommen. Im Prinzip gehören da ja auch noch so Begriffe wie Supererde rein, das ist ja äh das, was die Medien immer ganz gerne aufgreifen, weil das irgendwie so nach wie Erde nur noch noch toller klingt,Aber das ist damit ja nicht gemeint, sondern das sind halt einfach äh im Prinzip von der Zusammensetzung her ebenso wie die Erde, sprich ein Steinplanet, aber eben etwas größer,Mini-Nepune äh auch noch so ein Begriff, der Rumpf.
Hans Jörg Deeg
Das sind eben die äh die Gasplaneten, kleine Gasplaneten werden sich super erden, sind eben große terrestrische Planeten.Ähm super sind die eigentlich nur in Größe. Man erwartet eher wenig, dass die äh wirklich sonderlich äh gut wären zum zum äh für für den für die Entstehung von Leben.Aber ja gut, das ist eben eben jetzt.
Tim Pritlove
Begriff ist in der Welt, den kriegen wir jetzt auch nicht mehr weg.
Hans Jörg Deeg
Ja den kriegen wir nicht mehr weg ja ja das ist natürlich also der Holy Grail ist nach wie vor äh äh Planeten zu finden, die wirklich ähnlich zu unserer Erde sind,in Größe, in Oberflächentemperatur, in der Sorte vom Zentralstern,äh das sind eben die, wo aber am ersten erwartet wird, dass sich Leben entwickeln könnte. Und das ist natürlich auch eine der großen Motivationen da in der Exoplanetenforschung.
Tim Pritlove
Natürlich nochmal auf die schon jetzt immer wieder erwähnten Beobachtungsmethoden äh nochmal kommen. Die Transit Methode war die erste, war nicht die erste Methode.
Hans Jörg Deeg
Nein, die erste allerälteste ist, es gibt natürlich äh Versuche schon seit äh,frühes frühes 20. Jahrhundert, ernsthaft äh exo Planeten zu finden.Die älteste Methode, die ernsthaft versucht wurde, ist die sogenannte astrometrische Methode, wo man äh die Position von einem Stirn sich sehr genau anschaut.Und schaut, ob der über die Jahre geringe, regelmäßige,Schwingungen um diese Position macht und die wäre dann hervorgerufen durch eben den Umlauf eines massiven weiteren Planetens.Diese Methode hat auch ähm ein paar historische falsche Entdeckungen hervorgerufen, die später widerrufen wurden und nie so richtig akzeptiert wurden.Jetzt später neuere Entdeckungen mit dieser Methode gibt es aber jedenfalls historisch gibt's die Methode lang, aber hatte keinen Erfolg. Eine zweite,Wichtige Methode ist dann die die Radialgeschwindigkeitenmethode.Auch die Bewegung des Sternes durch den Planet beobachten, aber die Bewegung des Stirnes von uns,und zu uns hin, womit das Licht von dem Stern etwas blau oder rot verschoben wird und das eben auch wieder durch den Einfluss des Planeten,Äh das ist die Methode, die am Anfang den ersten großen Erfolg hatte mit dem einundfünfzig Pegasus und auch einem vorigen äh Planet, der sehr massiv ist, der nur damals nicht als Planet äh aner,äh HD eins acht, ich komme nicht genau auf die Nummer jetzt. Äh war neunzehnhundertneunundachtzig, äh wenn der damalige,Entdecker oder das Entdeckerteam, den als Planet äh ausgegeben hätte, werden Sie heute ganz klar die die ersten Entdecker eines bei mir, aber Sie ja waren damals zu vorsichtig und haben ihn als massive, wahrscheinlich alsals Zwergplanet oder Brauntwurf eben klassifiziert.Jedenfalls ist diese Methode war am Anfang die wichtigste Methode, äh die die ersten, die Radialgeschwindigkeiten.
Tim Pritlove
Okay, das äh können wir vielleicht nochmal vertiefen. Also.Planet oder die Planeten ziehen um, um diesen Stern herum und wie das immer so ist, alles was Masse hat, zieht an, das heißt nicht nur äh die Sonne reißt an den Planeten, sondern auch die Planeten reißen an der Sonne.Differenz, die das für den Stern ausmacht quasi in dem Moment, wo die Planeten mehr oder weniger.Zwischen unserem Beobachtungspunkt und dem Stern hin und her gehen wird quasi der Stern mehr angezogen in diese Richtung und diese Frequenzverschiebung allein lässt sie schon messen.
Hans Jörg Deeg
Die lässt sich messen, die ist erstaunlich langsam zum Teil, also äh zum Beispiel die Erde auf die Sonne.Wegen der Erde bewegt sich die Sonne mit einer Geschwindigkeit von zehn Zentimeter pro Sekunde. Von einem entfernten Beobachter weg oder zu ihm hin.Sagen wir mal, jemand aus einem anderen Sternsystem schaut sich unser System an äh,der Effekt der Erde wäre also eine Geschwindigkeit, die zehn Zentimeter pro Sekunde maximum hat und äh von Plus auf Minus innerhalb von einem Jahr sich verändern würde, neSehr gering, aber es wird dran gearbeitet und es ist realistisch, diese Geschwindigkeiten beobachten zu können, also die die rot- und die Blauverschiebung des Lichtsdurch eine Geschwindigkeit von nur zehn Zentimeter pro Sekunde. Das ist langsamer wie wie wir laufen, ne? Wir laufen ungefähr zehnmal schneller.Das ist also erstaunlich, diese Präzision kann bald wohl gut erreicht werden im Moment werden ähäh routinemäßig geschwindigkeiten von einem Meter pro Sekunde ähm gemessen. Das ist also die typische Spaziergänge.Und damit können wir eben Planeten nachweisen, die vielleicht etwas schwerer wie die Erde sind, also,unser Sonnensystem uns anschauen würden, müsste die Erde zehnmal schwerer sein, dann hätten wir diese Geschwindigkeit oder der Planet müsste näher am Stern sein und würde dann auch eine größere, sogenannte Radialgeschwindigkeit von dem Stern her ähm hervorrufen.Das ist als eine Methode, die seit 1995 seit der Entdeckung des ersten Planeten.
Tim Pritlove
Teleskopen wird das dann gemacht.
Hans Jörg Deeg
Diese Methode wurde verbessert mit mit Instrumentation, die immer äh raffinierter wurde,die Originalentdeckung wurde mit einem relativ kleinen Teleskop in Frankreich gemacht von dem einundfünfzig Pegasus und äh wir haben hier zum Beispiel äh eines der besten Instrumente in La Palma.Das ist äh das sogenannte Herbstinstrument.Das haben äh ähm einem italienischen 3,6 Meter Teleskop äh installiert ist.Ähm das kann eben mittlerweile diese Geschwindigkeiten, die ich vorhin gesagt erwähnt habe von unter einem Meter pro Sekunde schon messen.Und das ist eins der zwei besten Instrumente im Moment, die die es gibt. Das Herbst hat noch einen Zwilling auf ähm praktisch identisch ist äh bei der E so in Chile,Ähm und es gibt im Moment nur noch ein Instrument, das besser ist, das ist das sogenannte Heires Instrument, das am WLT auch in Chile montiert ist.Ähnliche Präzision, aber es ist an einem acht Meter Teleskop statt an einem dreieinhalb Meter Teleskop installiert. Äh das ist im Moment das Empfindlichste Radialgeschwindigkeit,äh ein Instrument. In der Zukunft wird's wohl dann äh am, äh dem äh vierzig Meter,Extremi-Large Talascope, European-Large Talascope äh weitere Instrumente geben, die dann aber vor allem Sterne unter die nicht in der absoluten Präzision viel besser werden, weil da lässt sich nicht allzu viel machenäh aber eben noch ähm mehr Signal bekommen äh hätten.Um damit ähm schwächere Sterne anschauen können, weiter entfernt das Systeme. Ja, äh damit können wir dann natürlich mehr noch beobachten. Es gibtbei der Radialgeschwindigkeitsmethode ein systematisch oder ein ein grundsätzliches Problem ist. Das ist, dass die Oberfläche der Sonne nicht nicht solide ist, sondern natürlich Gase sind und die bewegen sich mit Geschwindigkeiten, die viele Größenordnungen größer sind wie die Radialgeschwindigkeit,und was wir beobachten ist die Radialgeschwindigkeit des Durchschnitts der Sonnenoberfläche.Letztlich wenn wir uns die die was wir uns anschauen ist das Spektrum das so ne oder des Sternes.Und das sind diese Spektrallinien eben. Äh und die sind natürlich durch die Oberflächenbewegung des Sternes äh,haben die nicht keinen ganz genauen Wert, sondern äh in in Wellenlänge, die sind äh brodet. Die sind geweitet äh und damit ist es das Profil ist relativ weit äh,sagen wir mal,Kilometer pro Sekunde weit und wir müssen das Ding Durchschnitt ausrechnen davon auf eine Genauigkeit von Meter pro Sekunde. Daher ist die Beobachtungstechnik wichtig,Äh es geht auch nur an manchen Sternen äh auf so so gute Präzisionen zu kommen, weil andere Sterne haben zum Beispiel äh viele Sonnen oder Sternenflecken, die stören praktisch das Signal und diesen Durchschnitt,und damit kommen wir dann nicht äh so weit, dass wir da wirklich äh nach einigen Wochen oder Jahren von Beobachtungen wirklich eine klare Kurve sehen können, dass sich diese Radialgeschwindigkeit ändert, wie es erwartet wird von einem Planeten.
Tim Pritlove
Okay, also die Radialmethode Steine am Anfang war verantwortlich für die ersten wirklich bestätigten Entdeckungen und,verbessert sich auch noch. Die ist jetzt sozusagen nicht raus. Man nutzt die einfach weiter, andere Methoden gibt es, aber die äh wird auch bleiben und wird immer besser, umso besser die Spektographen werden die Teleskope werdenman auf diese Sterne beziehungsweise in dem Fall auf diese Planeten äh ansetzen. In dem Fall sind's ja wirklich die Sterne, auf die man äh.
Hans Jörg Deeg
War eigentlich praktisch immer nur den Stern und nicht den Planeten.Ich ich komme vielleicht noch zu noch zu einem aber jetzt hört man wahrscheinlich die Transitmethode äh erläutern, ne.
Tim Pritlove
Auf jeden Fall.
Hans Jörg Deeg
Äh das ist heute vielleicht die wichtigste Methode, die wir auch wie gesagt ich habe schon gesagt, ich habe ein Projekt angefangen mit der Transit-Methode, bevor der erste Planet gefunden wurde neunzehnhundertfünfundneunzig,die wurde auch schon lang erwartet diese Methode. Die wurde in den 70er Jahren schon vorgeschlagen äh aber dann wirklich umgesetzt erst äh wie gesagt in den Neunzigern.Äh bei dieser Methode, die ist konzeptuell äh die einfachste, äh was wir beobachten, ist letztlich, äh dass das ein Planet vor einem Stirn vorbeigeht auf seinem seinem Orbitund den Stern etwas verdunkelt einen kleinen Teil von dem Stern, der stand da mit etwas dunkler wird und ähm und eben das wird gemessen mit einem Fotometer, das für einige Stunden zum Beispiel der Stirn,Sag mir mal ein Prozent äh dunkler wurde äh und dass sich das wiederholt nach einigen Tagen und wenn man das beobachtenäh und uns sicher sind, dass wir hier keine keine Messfehler haben, dann können wir daraus schließen, dass da ein kleineres Objekt um den Stern herumkreist und ähm dass es eben wohl wahrscheinlich jetzt heutzutage wird es relativ schnell akzeptiert vor30 Jahren äh war das anders. Knapp 30 Jahren, äh dass es sich dabei um ein ein äh sogenannten Hot Upiter Planeten handelt.Es geht also wirklich nur drum, eine periodische Verdunkelung, leichte Verdunklung des Sternes zu beobachten.Wirklich der erste Planet, wo wir dann wirklich auch sicher waren, dass es ein Planet ist und nicht was anderes. Die mit der Radialgeschwindigkeit äh gefunden wurden.Als das herauskamen. 1995 gab es durchaus auch ernsthafte ähm bekannte Forscher, die äh zumindest,sicher waren und nicht wirklich akzeptiert haben, war als die erste der erste Planet.Sowohl mit der Radialgeschwindigkeitsmethode als auch mit Transitz äh gefunden wurde. Das war neunzehnhundert neunundneunzig.HD zwei null neun vier fünf acht.Da war dann wirklich klar, Exoplaneten gibt es wirklich. Das wurde dann wirklich universell auch akzeptiert, dass auch die anderen Planeten, die vorher mit der Radialgeschwindigkeitsmethode gefunden wurden, dass das eben auch äh wohl höchstwahrscheinlich Planeten sind.
Tim Pritlove
Transitmethode setzt er im Prinzip voraus, dass der Planet äh auf der Sichtachse zwischen Erde und ähm,dem Stern durchgeht. Mit anderen Worten, man kann mit dieser Methode ja im Prinzip nur einen Bruchteil aller Planeten überhaupt entdecken.Das ist so ein bisschen.
Hans Jörg Deeg
Ja, genau. Das ist eben der Nachteil der Transitmethode, dass äh die Wahrscheinlichkeit äh äh einen Planeten zu entdecken ähm.Relativ klein ist, sagen wir's mal so, von einem zufällig ausgerichteten Planetensystem, wenn es die Radialgeschwindigkeitsmethode kann fast alle Systeme,finden, außer die, wo wirklich äh wir wir senkrecht auf den Orbit draufschauen. Die tun keine Radialgeschwindigkeit hervorrufen. Das ist eben ein ein großer Unterschied äh,zwischen diesen beiden Methoden. Eine Sache, die allerdings wiederum glücklich ist,wenn wir einen Planeten mit der Transitmethode finden, ist die Bahn so ausgerichtet eben, ja, wir schauen auf äh praktisch äh in die Ebene der der Bahn hinein,parallel zur Ebene, zur Bahnebene, dass auch äh dieser Planet gleichzeitig für die Radialgeschwindigkeitsmethode optimal ausgerichtet ist und mir das optimale Signal bekommen.Aber wie immer bei der Transitmethode, wir.Haben eine gewisse Wahrscheinlichkeit einen Planeten mit einer mit einer gegebenen Größe und gegebenem Abstand vom Stirn zu finden und äh daher müssen wir immer dann hochrechnen, wenn so und so viele,Planeten bei der Transitmethode mit der und der Größe und und und Umlaufdauer gefunden werden, was können wir daraus überhaupt das Vorhandensein von Planeten, von dieser Sorte insgesamt äh aussagen. Das muss dann hochgerechnet werden, weil wir eben immer nur einen kleinen Bruchteil der der.
Tim Pritlove
Aber im Prinzip müssten sich ja mit der Radialmethode alle Transitbeobachtungen bestätigen lassen.
Hans Jörg Deeg
So ist es theoretisch und so wurde es auch lang gehandhabt bei den ersten Transitbeobachtungen wurde dann auch immer gleich zum,nach äh Radialgeschwindigkeitsbeobachtungen gefragt und es ist nach wie vor der Fall. Zum einen zum Nachweisen ist der Planet wirklich ein Planet ist und nicht zum Beispiel ein bedingungsveränderlicher, wo ein kleiner.Stern, der oft ähnliche Größe wie Jupiter hat äh vorbeigeht, ähm der vielleicht ähnliche Signale hervorruft,bei der Transitminute gibt's auch ein Problem oft, dass wir einen Vordergrundstern haben.Und sehr nahe daneben, aber in Wirklichkeit viel weiter entfernt, ist ein Bier.Und dieser Bedeckungsveränderlicher. Er hat eben seine seine Klipsenund wir sehen aber nur den den Flux von den drei Sternen letztlich zusammen und und es erscheint wie ein ein Transit. Daher.Ist es oft nicht ganz einfach zu entscheiden, ob ein ein Transither, der nur optisch gefunden wurde, ist eben, ob's wirklich ein Planet ist.Daher wird heute auch nach wie vor routinemäßig werden werden, zumindest die interessanten äh Transitkandidaten mit Radialgeschwindigkeit äh beobachtet.Eben zum Nachweis, aber zum anderen auch, ist es wichtig, weil über die Transitmethode, was wir da finden, ist die Größe des Planets oder die Größe des Planets relativ zum Stern. Mit der Radialgeschwindigkeitsmethode finden wir die Masse des Planets relativ zum Stirn.Und wenn wir natürlich das mit beiden beobachten können, mit beiden Methoden, dann können wir auch die Dichte ab äh ausrechnen von dem Planet und wir haben damit die die best bekanntesten äh Planetensysteme. Daher wird nach wie vor Radialgeschwindigkeit,wenn's sinnvoll ist jedenfalls fast immer auch äh,verwendet, um um Transitkandidaten äh nachzuverfolgen. Das ist was, was wir in der Aktualität auch äh sehr viel machen jetzt grad.
Tim Pritlove
Überhaupt entwickelt sich ja, glaube ich, die Disziplin so langsam von ähm.Wir suchen jetzt überhaupt erstmal welche, wolltest sicher sein, dass es die gibt. Wir bestimmen mal Bahnenumlaufzeiten äh et cetera, dann eben die Planeten. Typen ähm wollen auch immer kleinere ähm,und immer weiter entferntere Planeten äh finden, was ja im wesentlich mit Auflösung und Zeit äh zu tun hat hinzu, wir wollen jetzt aber auch mehr konkret über die Planeten selber,Wissen, also da nochmal schauen, aber ähm.Eigentlich neben der Radialmethode, Transitmethode noch eine weitere Methode äh erwähnen, die jetzt noch eine Bedeutung hat, die das Feld noch ergänz.
Hans Jörg Deeg
Er wäre vielleicht noch eine, weil das ist eigentlich so die die einfachste. Äh,Das ist äh wir nennen's immer direkt Imaging oder so ein Bild aufzunehmen,mit einem Teleskop mit hoher optischer Auflösung ein System anzuschauen und das sehen wir dann vielleicht in Zentralstern und vielleicht sehen wir in geringer Entfernung davon ein weiteres Objekt, das möglicherweise ein Planet ist.Wenn man das dann zum Beispiel ein Jahr oder zwei Jahre später wieder beobachtet, sieht man, dass sich dieses kleine Objekt um den um den Stern herumbewegt. Ähm.Das ist natürlich die die einfachste Methode konzeptuell in der Praxis äh lassen sich auf mit dieser Methode allerdings nur Planeten nachweisen, die relativ weit entfernt sind vom Stern oderProblem ist der enorme Unterschied in der Helligkeit zwischen Stern und einem Planet, weil ein Planet tut nur das Licht vom vom Stern reflektieren.Und was in der Praxis gefunden wird, sind äh Planeten, die sich noch bildendie selber noch eine gewisse Temperatur haben, wo sich das Gas noch zusammenzieht und die noch die die Kontraktionswärme haben,und damit wurden einige Systeme gefunden eben, die relativ jung sind, wo der Planet auch noch eine Größe hat, die die größer ist wie die, wo er mal später durch die durch den Hauptteil seines Lebens haben wird.Und ähm.Ja, das sind Systeme, die typischerweise Planeten haben, die erheblich weiter weg sind wie Jupiter, also zehn, 20, dreißig, äh astronomische Einheiten.Denke ich, ist noch die wichtigste Methode außerhalb denen, die wir die wir bisher erwähnt haben. Äh für gewisse Systeme gibt's dann auch noch auch noch ähm da kommen wir vielleicht noch dazu mit einem Planeten. Da wird auch noch das sogenannte Timing gemacht.Aber ich denke unter dem den Methoden, die die für normale Planetensysteme äh äh üblich sind oder bekannt sind, sind sind es die wichtigsten, die wir jetzt erwähnt haben.
Tim Pritlove
Die Entstehung eines äh Solarsystems,am Anfang muss ich erstmal aus dem Staub der Stern äh formieren, die Rotationen,dieses gesamten äh Staubs fließt ähm in die entsprechenden Rotationszeiten eines solchen Sterns ein. All der Staub, der nicht eingefangen wird, aus dem bilden sich diesen Planeten. Das heißt, man hat dann diese.Planetare äh Scheibe quasi, die dann vielleicht, wenn man direkt daneben steht, so ein bisschen ähnlich aussieht wie die Ringe halt beim Saturn, aber halt noch sehr viel weiter ausgedehnt. Sprich,Ist ja jetzt nicht so ein,Ding so Stern und dann ploppt, dann sind da irgendwie so Planeten, sondern das ist ja dann auch so eine Evolution dahin äh über Millionen von Jahren. Kann man denn mit einer dieser Methoden oder mit der Kombination dieser Methoden auchSternsystem befinden, wo quasi die Planeten noch gar nicht fertig sind, sondernkann man auch äh da schon erkennen, so aha okay, da bildet sich gerade was heraus.
Hans Jörg Deeg
Ja, da ist eben gerade die Methode, die ich jetzt als letztes erwähnt habe, das das direkt Imaging.Ist da wichtig, weil in dieser Methode äh sehen wir zum einen oft den Planet, aber wir sehen auch noch die Scheibe, in der derGasscheibe oder Staubscheibe, in der der Planet eben drin ist, die können äh auch gesehen werden und es gibt auch viele Fälle, wo man eben nur diese Scheibe sieht, aber keinen Planeten drin, weil diese Scheiben sind relativ leicht nachweisbar, die haben eine gewisse Temperatur,von einigen zig Grad Kelvin und die können dem Infraroten relativ leicht äh gefunden werden. Alsomit dieser Methode eben können wir sehr viel über die Entstehungsgeschichte eben nachweisen und man sieht zum Beispiel auch Gipfel äh wo man sieht, dass diese diese Schaden eine gewisse Struktur haben. Das sind mehrere Ringe dann letztlich, wo sich dann wohl entsprechende Planeten äh drin bilden.
Tim Pritlove
Grad Kelvin klingt jetzt nicht besonders warm.
Hans Jörg Deeg
Also relativ kalt, ja ja genau. Aber eben im Infraroten äh können diese diese diese thermische Strahlung von von solchen Temperaturen eben nachgewiesen werden.
Tim Pritlove
Genau, kann nachgewiesen werden und jetzt hatten wir als Beispiel bisher eigentlich nur die Bodenteleskope, aber es sind ja vor allem die Weltraumteleskope, die jetzt die größeren Entdeckungen in den letzten Jahren,festgemacht haben. Du warst ja auch ähm.Beteiligt an der äh Entwicklung und natürlich auch an der Nutzung zahlreicher Teleskope, welche Teleskope haben wir jetzt den größten Impact äh gehabt und woran warst du beteiligt?
Hans Jörg Deeg
Also äh.Beteiligt war. Ich hab's ein bisschen historisch äh zu machen äh an der Corodmission, wo ich die spanische Exoplanetenbeteiligung ähm.Ähm geführt habe. Äh war der erste Satellit, der wirklich äh spezifisch für Excel Planeten entwickelt wurde.
Tim Pritlove
Also zweitausendsechs gestartet bis zwanzig zwölf glaube ich äh nutzbar gewesen.
Hans Jörg Deeg
Ja äh der hat äh im Moment sind 37 Planeten mit Transitz gefunden.Relativ wenig und wenn man sich die heutigen Zahlen anschaut.Das bekannteste, was er fand, war der erste wirklich terrestrische Planet, wo man wirklich 100 Prozent sicher ist, dass Terest frisch von der Größeder auch mit danach nachgewiesen wurde, wo man wirklich sagt und ja, der restrische Planeten existieren, um andere Sternensysteme herum,Dann die Mission, die wohl bis heute den größten Einfluss hatte, äh ist die Kepler-Mission, die amerikanische Kepler-Mission, die wurde 2008 gestartet und lief bis 2013 wurde ein technischer Defekt, sie sie äh,zumindest äh die Hauptmission beendet hatte.Äh auch mit Transitz beobachtet äh größere Felder mit einem größeren Teleskop in einem Meter Teleskop. Hatte nur einen dreißig Zentimeter Teleskop.Und die hat ähm fünf Jahre lang das gleiche Feld beobachtet mit zehn bei zehn Grad Größe ähund hatüber 3.000 Planeten gefunden und auch darunter eine sehr große Menge an Planetensystemen eben, seitdem weiß man auch wirklich mehr oder weniger gut die Statistik, äh zumindest von den Planeten in der Größe, die Kepler eben beobachten konnte, entdecken konnte.
Tim Pritlove
Lief ja noch ein bisschen länger, aber war technisch eingeschränkt und.
Hans Jörg Deeg
Technisch eingeschränkt äh bei Caplers sind die sogenannten äh Gyroskope ähZweig ausgefallen, die die Ausrichtung stabilisieren und es gab dann so eine ArtNotmodus wurde erfunden dann wirklich äh ähm ziemlich äh kurzfristig.Dass Kepler zumindest in der in der äkypischen Ebene, also eine Ebene vom von der Erdumlaufbahn über die Sonne,noch ganz gut beobachten kann und da wurde dann eine eine zweite Mission, die so eine K2-Mission noch noch ähm ähm.Durchgeführt, die über mehrere Jahre lief, wo dann Felder, mehrere Felder beobachtet wurden über kürzere Zeit, spannend und auch mit etwas äh geringerer Präzision und die haben zumindest die Statistik auch nochmal äh weitergebracht.Eine weitere wichtige Mission, die jetzt seit hm drei oder vier Jahren äh läuft, ist die Testmission.Die es auch äh transit, also wie gesagt, alle alle,Exoplanetenmissionen, die bisher ähm gestartet worden sind, äh sind auf Transit äh Beobachtungen äh ausgerichtet. Der Grund ist einfach der, dass der der Gewinn,gegenüber Erdbeobachtungen da besonders Großes. Äh auf der Erde sind wir immer beschränkt von dem Tag-Nacht-Rhythmus. Wir können nur nachts beobachten. Wir haben oft schlechtes Wetter.Äh wenn es eine eine eine Mission im All natürlich 24 Stunden äh beobachten kann und nie für irgendwelche Probleme mit Wetter hatte, sind erheblich bessere Daten, die da eben kommen, präziser, besser charakterisierbar.
Tim Pritlove
Aber wäre es nicht auch möglich eine Mission zu machen, die sowohl äh macht als auch Transitmethode gleichzeitig.
Hans Jörg Deeg
Theoretisch ja, aber Lady Vilosity, also Rad ähm Spektroskopie bringt relativ wenig ins All zu gehen. Bei Radio Villoity, was wir brauchen sind äh Spektren, die einen gewissen Abstand genommen werdenne? Das hängt von der Orbit ne von der Orbitalperiode ab, an der mich interessiert sind, aber sagen wir mal zehn Mal pro Orbitalperiode. Wir können mehrere Perioden dafür verwenden.Das Wetter ist auch nicht so wichtig, solange es nicht wirklich schlecht ist, äh ist das in einem Spektrum nicht so wesentlich. Daher bringt es wenig äh ein Spektograph äh.Der Sorte ins ins All zu schicken, ja.
Tim Pritlove
Deswegen konzentrieren sich jetzt alle auf Transit.
Hans Jörg Deeg
Es gibt eine Spektrographenmission, die ist ähm von der ESAgeplant. Mal zum einen ist das James Web, das jetzt gestartet worden ist vor kurzem und und die sogenannte Arienmission von der ESA, die für 2029 zum Start geplant ist.Ariel wird äh Spektroskopie machen, wenn dransitzt, passieren. Das ist der ihre Hauptmission. Das ist ein Problem äh da kommen wir vielleicht noch dazu. Es ist interessant ähm.Zumindest größere Planeten zu beobachten, wenn sie Transitz machen, weil wir dann äh.
Tim Pritlove
Blick in die Atmosphäre.
Hans Jörg Deeg
Blick in die Atmosphäre von von dem Planet bekommen.
Tim Pritlove
Mhm. Da wollte ich da wollte ich äh ohnehin noch drauf zu äh sprechen kommen. Also äh vielleicht nochmal kurz zu den Missionen, weil äh in der letzten Sendung mit mit Heike Grauer habe ich ja auch schon auf auf zurückgeblickt, nur Test ist ja neu gewesen.
Hans Jörg Deeg
Ist neu, ja, das gab's.
Tim Pritlove
Äh da stand dann sozusagen schon am Horizont, aber ähm,Stand also, stand noch nicht am Häusern, sondern war nur am Horizont und ähm was verbessert den Test gegenüber Capler, was was sind denn da so die die nächsten Schritte, die da gegangen werden können?
Hans Jörg Deeg
Also Tess ist eine Mission. Ich denke es war 2tausendachtzehn, dass die äh wirklich gestartet wurde.Die tut den ganzen äh ganzen Himmel beobachten, ähm mehr oder weniger gleichmäßig.Äh und ist damit in der Lage, die erste.Katalogisierung von Transe, die macht auch Transitz äh aber die erste komplette mehr oder weniger auch homogene äh Katalogisierung von von dem Transitsystem äh zu machen.Test ist relativ klein. Äh das heißt, es kann nur eine Transitz finden, um relativ helle Sterne.Und äh beobachtet auch seine Felder für nicht allzu lange, 28 Tage beobachtet in der Regel seine Fälle, damit sehen wir nur äh wiederholte Transitz von Systemen eben, die Perioden haben von weniger wie 28 Tage,Er hat daher seine seine Limitationen aber ich ich denke es sind zwei Sachen, die die bei Tess,als Ergebnisse wichtig sind. Zum einen eben, dass wir wirklich,bessere Aussagen machen können und da denke ich fehlt auch noch einiges an Forschung und und dass das äh wirklichintegriert wird die ganzen Ergebnisse, wie verändern sich die Planeten in der und der und der Richtung äh von uns aus gesehen in der galaktischen Ebene oder bei der oberhalb,zum galaktischen Zentrum hin, vom galaktischen Zentrum weg. Äh da können sicher noch viele Studien gemacht werden, wenn Tes einigermaßen komplett ist.Und die anderen Ergebnisse grotesk äh wichtig sein wird äh sind das Tests relativ helle Systeme oder relativ nahe Systeme äh beobachtet.Das ist letztlich kommt es von seiner Limitation, dass Test relativ klein ist, die Teleskope haben zehn Zentimeter Durchmesser.Sind vier Stück davon. Daher die Systeme wo Tests findet.Lassen sich äh weiter beobachten mit anderen Instrumenten äh typischerweise Spektroskopie zum Beispiel, was wir vorhin schon mal angerissen haben.Oder auch mit mit großen Teleskopen für Transitz, wo man vielleicht mehrere,ähm Wellenlängen beobachten können. Jedenfalls sind die gut geeignet für weiterführende Studien,und dafür Radio natürlich sind das relativ einfache Objekte in der Regel,Daher finden wir über Tests, bei Testentdeckungen relativ viele Systeme, die sich gut charakterisieren lassen. Das war ein Hauptproblem mit Kepler. Kepler waren ein Meter Teleskopdie typischen ähm Systeme, die findet, waren 14. oder 15te Magnet und die meisten davon äh sind daher zu lichtschwach, um wirklich diese hochpräzise ähm äh SpektKopie zu machen. Wir brauchen für die Radialgeschwindigkeit. Daher warDie meisten Kepler kann äh Systeme konnten nicht mit Radialgeschwindigkeiten nachbeobachtet werden. Wenn es bei Test kann das bei praktisch allen gemacht.Ist ein ein großer Vorteil von von Tests.
Tim Pritlove
Also im Prinzip während die ersten Missionen alle noch drauf waren wir wollen jetzt überhaupt erstmal was finden, was wir auch bestätigen können,mit Tessol ein bisschen die Phase eingeleitet. So, okay, wir wissen, das gibt's. Äh wir haben die und die Häufigkeit. Wir wissen jetzt, mit welcher Präzision wir jetzt eigentlich ins All schauen müssen und jetzt geht's erstmal dadrum, zu katalogisieren, möglichst einen Überblick.Zu gewinnen, wo man dann mit anderen Missionen oder mit anderen äh Testgruppen, die schon existieren, äh nochmal genauer hinschauen kann, um überhaupt erstmal was zu haben. So wie,zum Beispiel jetzt irgendwie einen neuen Sternenkatalog macht, wo sich alle drauf stürzen, weil sie viele neue Erkenntnisse, also schon mal für alle ähm neuen Erkenntnisse Ansatzpunkte haben, liefert Test jetzt vor allem viele neue Ansatz.
Hans Jörg Deeg
Ja in dem Sinn sollte ich vielleicht jetzt auch die Pladomission noch noch erwähnen, ne? Ähdie Heike Rauer vor sechs Jahren schon mal äh wohl äh vorgestellt hat. Äh Heike Rauer ist ist die äh ähm,Haupthauptinvestigator von von Plato.Und diese Mission äh wird die nächste große Mission sein, die auf Exce Planeten ausgerichtet ist, ähm Plato macht auch Transitz, wie wie die bisher benannten.Wird es eine ESA-Mission, europäische Raumfahrtagentur und ist für Anfang 2027 ist der Start geplant. Äh,ganz grundsätzliches ähnlich, sagen wir mal wie Käppler, wird aber ein erheblich weiteres Feld beobachten, statt zehn mal zehn wird Plato äh fünfunddreißig mal dreißig5 Grad äh großes Feld beobachten.
Tim Pritlove
Also ähnlich insofern ist das man sich einfach auf einen einzigen Fleck quasi konzentriert und da die ganze Zeit hinstarrt.
Hans Jörg Deeg
Ja, zumindest äh bei Plato ist im Moment vorgesehen, dass es zwei Felder gibt, die jedes äh ungefähr zwei Jahre beobachtet werden. Wobei da gibt es noch einige Diskussionen, was, wie Ivi wirklich der das Beobachtungsprogramm aufgebaut wirdÄh aber die die die Hauptmission wird wird eben so sein, dass ein oder zwei Felder werden länger beobachtet, äh zumindest für Jahre.
Tim Pritlove
Diesen.
Hans Jörg Deeg
Fünfunddreißig mal fünfunddreißig Grad, ja das ist.
Tim Pritlove
Vergleich zu Mondgröße.
Hans Jörg Deeg
Mond ist ein halbes Grad, also 60 Monde in jeder Seitenlänge.Es ist ordentlich. Ja ja, das ist so ähnlich wie ich denke so ein 80 Millimeter Objektiv für eine kleine Bildkamera, so in der Größe ungefähr, was man da drin sieht.Ein ordentlich großes Feld,Wird, weil's ja groß ist, wird es auch mehr relativ helle, helle Sterne beobachten und und die entsprechenden Planeten da drin finden, die Transits von denen. Es wird typischerweise sehr erheblich besser Charakterisierbare Systeme finden, wie wie Kepler gefunden hat.Die Idee von von Plato ist, dass es wirklich äh die.Häufigkeit von kleinen Planeten ähm mit Probetalperioden bis zu einigen Monaten zumindest äh recht gut bestimmen kann.Hat auch eine starke Komponente, die drauf ausgeht, den Stern sehr genau zu bestimmen.Man kann nämlich durch geringe Helligkeitsschwankungen von den Sternen, zumindest von den helleren Sternen innerhalb von Plato. Da gibt es die sogenannten Astro-, sei's mologische Methode, mit der sehr genau ähmdie Masse und äh und äh die Dichte von dem Stamm bestimmt werden kann. Was dazu führt, dass wir hoffen, dass die die Platussysteme,Platopplanetensysteme, die ja die ausgemessenen äh Planetensysteme werden,Eine Sache, die ich vielleicht noch erwähnen sollte, ist bei sowohl bei der Radialgeschwindigkeitsmethode, wie bei der Transitmethodewas wir übermessen ist äh entweder Größe oder Masse vom Planet relativ zum Stirn und oft bei Transit äh Messungen insbesondere wissen wir diese relative Größe sehr genauaber äh die Präzision der absoluten Planetengröße,ist letztlich ähm begrenzt durch die absolute Größe vom Stern. Das heißt, es ist sehr wichtig, auch den Stirn äh wirklich genau ähm zu untersuchen und zu charakterisieren.Sowohl mit Spektroskopie gemacht wird, wie auch eben, wie gesagt, wie dieser Astro-Cysmologischen Methode.Äh um wirklich genaue Präzisionen zu bekommen vom vom Radius, vom vom Planet. Äh das ist auch sehr wichtig äh für um die Dichte vom Planet äh festzulegen.Die Dichte geht letztlich. Äh das ist der Radius zum,zum Kubus hoch drei durch durch die Masse. Zum Beispiel in der wenn der Radius nur zehn Prozent genau bekannt ist von einem Planet.Weil es hoch drei ist, ist dann die Dichte nur dreißig Prozent genau bekannt, also der Fehler ist erheblich größer, daher ist es sehr wichtig den Radius ziemlich genauzu messen den absoluten Radius von dem Planet, um auch seine Dichte dann äh dann gut äh zu bestimmen und die Dichte ist so derParameter wirklich um einen Planet zu charakterisieren, ob er jetzt eben ähäh terrestrisches oder von hauptsächlich durch Gas dominiert ist, aber auch um um was es sich handelt. Äh es sind's leichte Elemente oder eher schwerere Elemente. Daher brauchen wir die Dichte ähmeben relativ genau. Da hoffen wir, dass Plato wirklich ähm einen großen Fortschritt bringt.
Tim Pritlove
Radius ist ja auch immer gemeint der Abstand zum Stern.
Hans Jörg Deeg
Nee nee mit Radio. Jetzt habe ich grad gemeint einen Durchmesser oder die Größe,Größe vom Planet, der Radius, des des Planetens selber, ja. Na ja, bei bei Sternen sag ich, aus Zeichen der Regel Abstand, Planet, Stern sage ich, Abstand, okay? Ja mit Radis meine ich immer immer das Objekt selber.
Tim Pritlove
Was heißt Plato sucht auch wieder, sucht intensiver, schaut die ganze Zeit auf einen Bereich, der aber sehr groß ist. Ähm Plato, wie ja auch äh das James Web äh Teleskop wird äh glaube ich am Punkt zwei.Seinen Platz finden, also quasi mit der Erde herumziehen. Ähm da schaut man ja aber eigentlich so übers Jahr verteilt ja immer woanders hin. Wie gelingt es es denn äh da immer diesen.Ausschnitt im Blick zu behalten.
Hans Jörg Deeg
Ne, das hängt von ab, äh Plato äh kann senkrecht aus der Ebene rausschauen und damit kommt die Sonne nie davor. Äh Felder ausgekriegt. Das wurde,Es wurde auch bei Capri schon so gemacht,Kepler ist zwar um die Sonne gezogen, etwas äh vor der Erde entlang, nicht im Lakrosspunkt aber hat letztlich Senkrecht aus der oder mehr oder weniger aus einem steilen Winkel aus unserem Sonnensystem heraus ein Feld beobachten, dann kann man das das umgehendes Problem.
Tim Pritlove
Zwanzig siebenundzwanzig, also hier eine Wikipedia steht noch zwanzig sechsundzwanzig, vermute mal, dass es schon mehrere Male verschoben worden.
Hans Jörg Deeg
Es ist seit einigen Jahren recht stabilim Moment sind wir dabei, also die einige Komponenten sind auch schon gebaut worden, also nehmen wirklich konkret zu konstruieren, das ganze Designphase ist ist äh fertigÄh vor wenigen Wochen war auch der sogenannte Critical Design äh Refugee. Das ist also der wirklichwo wo das Design nochmal wirklich sehr kritisch angeschaut wird und wirklich abgecheckt wird von einem Themen von Experten, ob alles äh wirklich,gut zusammenpasst äh funktionieren wird.
Tim Pritlove
Stellt man denn da noch was fest, was nicht passt?
Hans Jörg Deeg
Bin da nicht drin, aber die tun gerade nicht drin, aber die tun dann schon äh oft noch Fragen aufwerfen, ne und dann hängt's von ab, ist da irgendein Problemund kleine Fragen oder oder kleinere Probleme wurden mit Sicherheit einige etliche identifiziert aber es war wohl kein Problem dabei wo das Komitee dann gesagt hat äh,Das ist ein Showstopper,Das kann nicht funktionieren und da gibt's auch keine leichte, keine keine hm gute Lösung für, die nicht äh zum Beispiel den Zeitplan auseinanderbringt oder erheblich mehrmehr Kosten verursachen würde. Das wurde offensichtlich nicht gefundenes sind sicher noch viele Detailssachen, die noch doch zu checken sind, aber äh wie gesagt, der hat diese passiert diesen sogenannten Critical Design Review.Womit ihr jetzt in der Phase ist, dass äh wirklich ähm die Teile gebaut werden. Das ist auch was, was ich jetzt persönlich äh geradeviel mit beschäftigt bin, weil mir machen ja mir eine spanische Beteiligung, wo wir die Elektronik von dem Satellit bauen und äh da haben jetzt im Moment Probleme wegen der Liefersituation von von den äh ganzen Mikrochips.Aber wir hoffen, dass sich das lösen wird ohne letztlich eine,ein großes Problem hervorzurufen, äh was eben sein könnte, ne, wenn die Lieferung nicht nicht rechtzeitig kommt, dass der ganze Zeitplan äh ausm Takt gerät und und und der Start verschoben werden müsste, das wäre natürlich äh.
Tim Pritlove
Alles wegen Corona.
Hans Jörg Deeg
Schlecht Corona, letztlich indirekt ist dadran Schuld, ja ja das hat nämlich diese Liefersituation hervorgerufen.
Tim Pritlove
Also mit anderen Worten fünf Jahre vor dem Staat ist das Ding noch nicht komplett fertig gebaut.
Hans Jörg Deeg
Nee, nee, das wird jetzt wirklich angefangen. Äh es gibt ein paar Teile, die wurden vorher schon gebaut, äh an den Kameras äh vor allem aber wirklich systematisch das Ding herzustellen, materiell jetzt herzustellen. Das das geht jetzt grad los. Äh.Oder ich sitze grad in Gange schon, aber.
Tim Pritlove
Ich hab's vorhin äh erwähnt, es war hier äh Thema in der 99. Ausgabe Cheops. Ist ja eine relativ kleine äh Mission, sehr spezialisiert, welchen Beitrag hat denn äh Krebs bisher schon leisten können? Es ist welche welche Komponente,Teil füllt das aus.
Hans Jörg Deeg
Da kann ich nicht übermäßig viel erzählen, weil ich in Cheops nicht dabei bin. Also ich habe mich damals am Rand.
Tim Pritlove
Nutzt man nicht die Daten, die da kommen.
Hans Jörg Deeg
Äh aber andere Teams machen das ja so. Ich meine ich ich schaue ich sehe Publikationen. Ich weiß, Cheops ist natürlich äh keine Entdeckungsmission,Vergleich zu den anderen, also äh Plato, Tess, äh Koro was man Missionen, die neue Systeme entdeckt haben.
Tim Pritlove
Da geht's ums Nachmessen, ne.
Hans Jörg Deeg
Ist kann nur ein einzigen äh Stern oder ein kleines Bildfeld gleichzeitigaufnehmen und damit nur ein systemtypischerweise anschauen. Äh das ist dazu gedacht, eben Planeten äh bekannte Systeme nachzuverfolgen. Ein Transe, der vorhergesagt wird, ähwieder zu beobachten, was oft schwierig ist vom Boden aus, weil die Transitz zum Beispiel länger wie äh zwölf Stunden dauern, dann sehen wir keinen kompletten Transit vom Boden, zumindest nicht von einem einzelnen Teleskop.Da ist Keops interessant. Äh Cheops wurde original auch ähm vorgeschlagen, um Systeme,durchzuchecken, wo nur Radio Nachweise da sind,einfach äh sagen wir mal fünf Tage oder so das gleiche System anschauen und schauen, ob da wirklich ein Transit äh ist oder nicht.Das war eine der Haupt.
Tim Pritlove
Und den dann halt auch vor allem sehr gut vermessen.
Hans Jörg Deeg
Und denen sehr gut vermessen, ja. Ja, also Keops ist auch ein 30 Zentimeter Teleskop, äh das ist doch mit ähnlich wie der originale Koro in in Präzision auch.Äh es ist eben flexibel einsetzbar und und so wird's jetzt auch gehandhabt. Da gibt's so eine eine Reihe an und dann,Objekt, die sie vor zu Beginn der Mission schon festgelegt haben, die die beobachtet werden und dann gibt's jetzt aber auch ähm sogenannte Calls, äh wo wo äh Forscher, die interessiert sind ähm,verwenden können, einen Antrag stellen müssen und wir wollen das jetzt auch machen äh konkret in den nächsten zwei, drei Wochen äh um ein System zu beobachten.Wo wahrscheinlich ein wir wissen nicht genau was es ist, es ist entweder ein Planet, der sich auflöst.Oder oder in eine eine dichte Staubwolke, die um den Stern herumkreist und keine ganz klaren Transitz liefert, aber äh,verwaschene, die ändern sich auch von Zeit zu Zeit etwas. Die haben 200 ziemlich klare Periode, ich glaube 0, acht irgendwas Tage,aber sie verändern sich. Sie haben auch eine gewisse Farb ähm Farbsignatur, das heißt wir haben in verschiedenen Farben den Transit anschaut, ist er verschieden tief. Wir nennen's im Moment der Everating Planet, also der verdunstende Planet.Den wollen wir genauer anschauen. Der wurde in Kepler Daten entdeckt vor einigen Jahren,und immer mal wieder vom Boden beobachtet, damit Kiosk hoffen wir, dass wir dass der mit einem besseren Präzision beobachtet werden kann.
Tim Pritlove
Jedem Instrument steigt sozusagen die Flexibilität bei der äh Beobachtung,Nächste Runde haben's schon äh angedeutet, wird durch das James Web Teleskopeingeleitet zu diesem Zeitpunkt als wir hier diese Aufnahme machen, das ist jetzt Ende Februar ist erfolgreich gestartetsehr erfolgreich gestartet, hat alles super funktioniert. Das Ding ist komplett ausgepackt und zu diesem Zeitpunkt werden gerade die ganzen Instrumente, also die Spiegel erst mal kalibriert,noch ein paar Monate, aber dann geht's ja losabgesehen davon, dass man damit in die Tiefen des Universums schauen kann und mal die allerersten Galaxien quasi das First Light sich äh dort der ersten Sterne äh anschaut,ist ja auch James Web für die Exo Planeten Forschung interessant. Was soll da der Beitrag sein?
Hans Jörg Deeg
Ja, also James Web wird sicher sehr wesentlich sein, nicht für die Entdeckung von neuen Systemen, aber eben für die, was mir die Charakterisierung nennen, eine genaue äh Beobachtung von von bekannten Systemen.Der Hauptbeitrag von James Webkommt mit Sicherheit von der sogenannten Transitspektroskopie, die wir schon mal angerissen haben. Äh man beobachtet einen Planet während eines Transits, aber machteben äh also eine Zeit, eine Zeitfolge von von Spektren und wir können dann sehen, ein Teil des Lichts von einem,Stern, das durch den Planet geht, der der vor dem Starneben ist und den verdeckt, das geht durch die Atmosphäre von dem Planeten durch,und tu dann die die Spektralsignatur von der von der Atmosphäre, die so eine Absorptionsspektrum von der Atmosphäre, von dem Planeten eben äh aufnehmen und das können wirnachmessen, indem wir Spektrum vergleichen während eines Transitzs und während des Off-Transit-Vor-und nach einem dran zu leben, ne.Das mit sehr hohem Präzision dieses Spektrum aufnimmt und da wirklich ist es sehr wichtigviel dicht zu sammeln, äh um die entsprechenden ähmSignal to Noise äh zu bekommen in diesem Spektrum. Wenn man da eben zwei Spektren haben dann letztlich eins, dass die Durchschnitt ist der der Transitspekt und 1 der Durchschnitte oft Transitspekt und können die voneinander subtrahiert werden und wir sehen dann im Prinzipdie das Spektrum des äh des Absorptionsspektrum der Planetatmosphäre.Das wurde schon gemacht seit ungefähr 15 Jahren in ein paar die sehr hell sind. ÄhDer der Boot zuerst entdeckt worden ist, aha die zwei null neun vier 5 acht waren's ist nach wie vor ein sehr beliebtes Objekt. Das ist eine sechste Magnetut. Äh Stern.Und James Web,hat keinerlei äh Probleme zum Beispiel mit der Spektralsignatur von äh von unserer Erdatmosphäre, die immer wieder störende äh ähm,Linien äh hervorruft und und degradiert. Äh James Web kann da sehr viel bei ähm liefern,Es ist eben ein großes Teleskop und extrem präzise und dann äh wo der andere äh gute.Anwendungspreis ist, dass James Webins Infrarot beobachten kann,der Vorteil gegenüber über ähm äh Erdgebundenbeobachtung noch erheblich größer ist wie wie im visuellen. Im nahen Infrarot ähzwar von der Erde viel beobachtet, aber es ist extrem wichtig, dass äh die Atmosphäre sehr, sehr trocken istdaher ist zum Beispiel Hawaii äh und und und in Chile sind die besten Plätze und und theoretisch auch die Antarktis sind die besten Plätze, wo die Luft sehr, sehr trocken ist und im Moment sehr hoch ist und relativ wenig Absorption im Infraroten hat.Aber es gibt dann ein paar Bänder, die noch im weiteren Infrarot sind, wo wir auf der Erde überhaupt nichts machen können, weil die grundsätzlich äh die Atmosphäre undurchsichtig ist.Und das lässt sich eben umgehen mit einer mit einer Mission im All.Und James Web kann äh eben nahen bis mittleren Infrarot ähm äh eben Beobachtung machen, sowohl Spektren als auch Bilder,die schlichtweg nicht möglich sind vom Boden. Und das ist wo wirklich James Web wohl wirklich Neuland äh betreten wird.Vor allem auch in der Beobachtung von Systemen, die eben noch in der Bildung sind, die eben typischerweise diese Temperatur haben, wie wir schon mal erwähnt haben, also Zimmertemperatur mehr oder weniger, äh die die im Infrarot abstrahlen.Wo dem sowohl Bilder extrem hoch auflösende Bilder gemacht werden können mit James Web, wie auch wie auch Spektren von den äh interessanten ähm.
Tim Pritlove
Das heißt, wir werden vielleicht dann auch mal ein erstes Bild von einem Exoplaneten bekommen.
Hans Jörg Deeg
Also ein,Planet als Punkt haben wir ja schon äh also zumindest bilden also auflösende Bilder, wo wir den Planet wirklich als Scheibe sehen können äh ist auch Jamesäh nicht in der Lage dazu, da gibt's andere Projekte, die sind dann im Moment alle auf äh soweit ich weiß auf Eis gelegt.Da bräuchten wir wirklich Systeme Systeme, wo mehrere Teleskopejedem gewissen Abstand von Kilometern oder hunderten von Kilometern ein Riesenteleskop praktisch spielen, dass er eine entsprechende optische Auflösung hätte, um auch einen Planeten als Scheibe ähm abzubilden.
Tim Pritlove
Eine ganze Armada von James Webs.
Hans Jörg Deeg
Ja, da gab's das Darwinprojekt, äh das äh Anfang der 2tausender stark äh forciert wurde, äh wo wirklich äh Planeten, das heißt,wo wir Plane äh Sterne beobachten können und wirklich das Planetensystem dann ziemlich komplett sehen würden als Bild,Es hatte allerdings auch nicht die Auflösung, die Planeten selber als Scheibe aufzulösen. Da gibt's noch bessere Ideen, die aber im Moment völlig außer Reichweite sind.
Tim Pritlove
Auch nicht so wichtig, äh sehr viel wichtiger ist ja, dass man dass man was drüber weiß. Ähm diese Möglichkeit, den Planeten zumindest dann soweit aufn Pelz zu rücken, dass man mehr über die Zusammensetzung der,Atmosphäre und damit ja auch mehr über die Zusammensetzung der Planeten als solche weiß, welche.Also welches Potenzial entwickelt James Web an der Stelle wirklich, was was ist so im äh im Erwartungshorizont, mal jetzt mal die überraschenden Erkenntnisse mal.
Hans Jörg Deeg
Die Überraschenden kann ich ihnen nicht vorhersagen, ja, ja. Ja, ja. Äh.Erwarte wohl, dass das wohl wichtige Sachen werden sein, dass wir ähviele also die die Atmosphäre-Charaktisation, die wir schon schon genannt haben, die ist bisher doch immer reichlich oberflächlich. Da werden ein paar Komponenten gefunden.Und wir können nach wie vor nicht wirklich sagen, was äh was da ist. Äh,Das andere, wo ich erwarte, dass hoffentlich äh wirklich interessante Ergebnisse kommen, ist eben die Atmosphären von terrestrischen Planeten. Die waren bisher völlig unerreichbar.Und und James Web sollte uns wirklich die ersten.Atmosphären, ich hoffe auch einigermaßen detailliert geben von der restlichen Planeten, wo dann auch Planeten vielleicht drunter sind, die mehr oder weniger äh äh habitabel sind.Also erleben äh leben äh Leben halten äh unterstützen könnten,Das wird wohl der weitere wirklich große, große äh äh Sprung sein mit James Web ähmdiese diese Klasse vom Planeten, die im Moment wirklich nicht nicht möglich ist äh zu untersuchen, dass dass wir da die ersten ersten Atmosphären bekommen.Von von erdähnlichen Planeten.
Tim Pritlove
Was wären denn so die interessantesten Erkenntnisse? Also ich meine, man kann jetzt auf alles blicken, man man sammelt jetzt erstmal äh äh Daten.Äh von Zeit zu Zeit muss man sich ja dann glaube ich auch immer mal wieder fragen, was wollen wir eigentlich wirklich jetzt als nächstes äh verstehen, was sind so äh die entscheidenden Fragen, wovielleicht auch viele zukünftige äh Entwicklungen und Erkenntnisse äh dranhängen. Was kann denn so die EXO Planeten Forschung vielleicht,uns noch einen grundlegenden Erkenntnissen geben wird, außer über die Xo Planeten als solche,Also was kann man zurückschließen auf unser äh Sonnensystem oder was in äh anderen Bereichen der Kosmologien äh vielleicht einen Einfluss hat.
Hans Jörg Deeg
Ja, ich denke wirklich äh klar zu verstehen, wie unsere Sonnensystem zum einen äh entstanden ist.Dafür sollten wir andere ähnliche Systeme noch finden und und auch auch analysieren. Äh die.
Tim Pritlove
Schon welche gefunden, also die.
Hans Jörg Deeg
Wir haben wie gesagt Jupiter haben wir bisher gefunden, ähnliche Jubiter vielleicht auch mal uns Saturn äh Äquivalent, aber aber weitere noch nicht. Äh,Und ich denke dann äh wirklich die wesentliche Frage, die Exce Planeten auch auch stark motiviert ist eben, die das Vorhandensein von Leben im Universum.Ist es wirklich was? Sind wir wirklich eine große Ausnahme hier oder ist es doch eher wahrscheinlich, dass es dass es viele Sterne gibt, wo wo eben Planeten sind, die leben äh unterstützen könnten.Weiter weg dann eben die Frage auch äh hochentwickeltes Leben oder nicht,wie intelligentes Leben natürlich, wo dann auch einen gewissen Überlapp haben mit den City-Projekten, die wirklich versuchen direkt äh extra technische Intelligenzen zu finden und das praktisch Abkürzen dann diesen Weg.Dass es im Moment wohl auch die die Hauptmotivation äh äh für für viele der der Projekte die die laufen.Dass wir da einen Weg finden, die die Planeten genauer zu charakterisieren, zum Beispiel zu sehen, ob,äh wirklich äh Gase sind, die darauf hinweisen, am Beispiel Sauerstoff oder Ozon, dass da wohl biologische Prozesse auf diesem Planeten äh im Gange sind.Eben die Frage, sind wir allein im Universum? Sind wir relativ häufig.Sind wohl sehr grundlegende Fragen, die auch schon vor der Entdeckung von Planeten äh äh diskutiert worden sind.Vielleicht schon die griechischen Philosophen haben sich schon mit denen beschäftigt, mit dieser Frage äh die aber nach wie vor nicht gelöst ist. Äh.Das ist, wo ich denke, diese Forschung kann uns wirklich äh die.Gute Hinweise geben zumindest. Es ist sehr graduell, es baut aufeinander auf. Äh.Was vorhin schon mal angerissen worden ist. Vielleicht können wir eines Tages wirklich andere Planeten ähnliche Karten, ähnliche Karten sehen davon und wirklich sehen, ob die zum Beispiel äh äh im Winter,weiß sind in einem Pool und im Sommer grün und das sind Wälder dann wahrscheinlich da das vielleicht in der Entfernung Zukunft durchaus möglich.Letztlich die Planeten sind, der Bestandteile im Universum, mit dem wir uns am besten auch auskennen oder wir leben auf einem.Und daher denke ich auch, dass es wirklich wichtig ist äh zu sehen, tun diese Erden woanders existieren. Wie könnten sie sein? Es regt auch die Fantasieen äh oft äh wie wie dieser Planeten aussehen könnten.Was was gibt es an an Bandbreite in der Natur wirklich was da produziert werden könnte.
Tim Pritlove
Weißt äh, wer's richtig mitbekommen habe, es gibt aber eigentlich alles, was wir bisher gesehen haben, ist erstmal nicht unbedingt jetzt genauso wie unser Sonnensystem.Gebaut. Das mag einfach sein, dass wir noch zu wenig angeschaut haben. Es könnte aber trotzdem eben sein, dass es eben einfach bedeutet, dass hier doch irgendwas,Komisch gelaufen ist, sind wir doch in irgendeiner Form so ein Zufallsprodukt äh Produkt sind. Denkst du darüber?
Hans Jörg Deeg
Ja, es gibt eben die Theorie, dass unsere Sonnensystem so ist, wie es ist, weil äh in der Frühzeit des Sonnensystems ein weiterer Stern relativ nah an unserer Protoson vorbeiging,und da entsprechend äh die die ähm Autoplanetare, Scheibe äh etwas gestört hat. Äh ist eine Theorie,äh und daher wär's interessant natürlich zu sehen, ob diese Theorie vielleicht richtig ist oder nicht. Äh wenn die Theorie stimmt, wären wir relativ selten,Na ja, weil diese diese nahen Vorbeigänge relativ selten eben nur nur vorkommen würden. Wenn die Theorie falsch ist, dann sollten wir euch eher relativ häufig sein, unsere Sonnensysteme.
Tim Pritlove
Wie nah sind wir noch dran an dieser Erkenntnis? Also wie wie viel mehr.Beobachten, also.
Hans Jörg Deeg
Ja äh ich denke wir um unsere Sonnensysteme wirklich besser zu charakterisieren brauchen wir,zum großen Teil auch mehr Zeit schlichtwegs, weil die die Perioden von einem Jupiter ist elf Jahre von Saturn und ich richtig pensiblen 20 Jahre.Noch länger äh etliche Jahrzehnte bis über über 100 Jahre. Äh,mit Radialgeschwindigkeiten, was dafür die geeignetste Methode ist im Moment, äh brauche ich mir dann eben auch etliche Jahrzehnte, um da wirklich eine komplette Periode äh zu beobachten.Daher kommen diese Systeme mit der Zeit langsam rein. Äh daher gibt's jetzt auch die ersten mehr oder weniger Jupiter ähnlichen äh Planeten um um andere eine Sterne, die bekannt sind.
Tim Pritlove
Ist es denn vorstellbar, dass man auch nur aus einem einzigen Transit, den man beobachtet, schon äh Rückschlüsse äh ziehen kann, dass man sich mal so sicher ist, dass das auch wirklich einer ist?
Hans Jörg Deeg
Nee, nee äh hm.
Tim Pritlove
Das wäre eine schöne Abkürzung.
Hans Jörg Deeg
Es wäre eine schöne Abkürzung bei Kepler wurde das versucht. Die Kepler-Mission wurde eigentlich gestartet mit der mit der Motivation, dass äh.So was wie unsere Erde, um eine Sonne gefunden wird. Deshalb wurde die vier Jahre lang äh sollte die laufen, womit eine Erde, wo man die Sonne, wenn die richtig ausgerichtet ist, äh eben vier, drei bis vier Transitz äh hervorruft und,dem Sinne ist, Käpplei gescheitert, äh obwohl's die wichtigste Mission war, die am meisten bisher geliefert hat, aber im Sinne des der Originalmotivation, mit der damals die Anträge geschrieben wurden in den 90ern noch,äh ist Kepler gescheitert, dass es wirklich kein echtes äh zweites äh Sonnensystem gefunden hat. Keine zweite Erde, Erde Nummer zwei.
Tim Pritlove
War das vielleicht nur das Ziel, weil man das am besten finanziert bekommt.
Hans Jörg Deeg
Das können liegt immer bisschen dahinter, dass diese diese Anträge werden so geschrieben, dass da was Interessantes ist, äh das nicht realistisch ist und auch gleichzeitig eben äh ähm,attraktiv ist. Das ist klar, äh wenn Sie wussten ja damals auch nicht einmal, welche Planeten häufig sind und welche nicht, weil Kepler wurde ursprünglich noch vor der Entdeckung der ersten Planeten äh vorgeschlagen, unter anderem Namen.Äh daher kommen da sehr viele heraus bei solchen Missionen, dass wir das nicht vorher gesehen ist.Wichtig ist vielleicht, äh um wirklich zu sehen, ob's andere Systeme gibt wie unsere. Wer eine weitere Missionie damals bei die sogenannte Darwin-Mission, die die dann wiedereingestellt wurde in den 2tausendernwo eben mehrere Teleskope zusammen versuchen hochauflösende Bilder zu machen. Da kann man dann wirklich einen Planetensystem, das war die Idee von da, wenn wirklich die nächsten,Sterne, also äh vom absoluten Abstand zu uns die allernächsten Sterne innerhalb von 1 Lichtjahren oder 15 Lichtjahren wirklich systematisch zu beobachten und da Bilder aufzunehmen. Und wirklich zu sehen, obdie äh Planetensysteme haben, die mehr oder weniger unseren entsprechen.Das wäre also eine Methode, wo es aber dann letztlich äh waren es technische Probleme oder oder Unabwägbarkeiten äh Risiken.Mehrere sehr große ähm Teleskope im Aal zusammenzustarten und dass die zusammen äh mit interfermetrie eben wirklich zusammenarbeiten.Das war zu teuer und zu zu risikoreich, da heißt diese Mission äh ähm vor zehn Jahren ungefähr eingestellt worden, der die Arbeiten dazu. Aber das wäre eine Lösung, die dazu,führt hätte wohl, dass dass wir wirklich sehen könnten die nächsten Sterne haben so und so viel Planeten.
Tim Pritlove
Bräuchte man sozusagen eine finanzierbare Mission, die sehr, sehr, sehr, sehr, sehr, sehr lange läuft, ähm wenn man sich das so jetzt in den,Orbitalen Projekten äh anschaut, geht ja der Trend hin zu, na ja, wir bauen halt dasselbe Ding äh x mal, dann wird das irgendwie schön billig ähm,hauen dafür aber auch regelmäßig neue raus. So eine Dauerbestückung.
Hans Jörg Deeg
Ja, da könnte schon vielleicht mal Ideen geben äh vielleicht kleinere Teleskope zu bauen, ja in Serie, die dann wirklich äh äh zusammenarbeiten könnten.
Tim Pritlove
Alte ersetzen und sozusagen dieselbe Beobachtung ja immer immer.
Hans Jörg Deeg
Ja, ja oder eben mit interfermetrie wirklich zusammenarbeiten. Da könnte's auch sein, dass es irgendwann mal vielleicht gute Fortschritte gibt äh in in das ist hauptsächlich Sachen mit Steuer- und Regeltechnik. Äh zwischen diesen äh Instrumenten.Dass dass es da Fortschritte gibt äh.Ja ja, aber im Moment, wie gesagt, ist keine keine Mission in der Richtung gestartet, aber sicher, es gibt neue Generationen an Forschern auch, die neue Ideen bringen und und das ist natürlich das Wichtige, dass das immer wieder da.Eben kommen für weitere Missionen. Vielleicht kommen aber auch aus unerwarteten Richtungen äh äh Ideen, wo wir jetzt gar nicht dran denken, weil so irgendwelche exotischen äh Entdeckungsmethoden.Das das können wir wirklich nicht nicht vorhersehen im Moment, ja.
Tim Pritlove
Jetzt können wir sie erstmal auf die Ergebnisse von James Web ähm freuen, das äh geht ja dann so in einem halben Jahr los und dann,Nochmal äh schauen, was passiert. Plätze zum Schluss, mich würde ja nochmal interessieren, was mannoch so äh bisher entdeckt hat, was vielleicht auch jetzt nicht unbedingt zu dem Stall entspricht. Also auf der einen Seite sucht man etwas, was so ist wie unser Sonnensystem, weil das soll uns natürlich irgendwie Erkenntnisse geben. Andererseits hat man viel anderes äh gefunden.Wie weird sind denn die ganzen Planetensysteme, die man so bisher gefunden hat? Was sind denn da so die absurdesten Konstellationen,man so entdeckt hat und du hast ja vorhin auch schon diese.
Hans Jörg Deeg
Genau das.
Tim Pritlove
Wahrscheinlich auch in diese Kategorie.
Hans Jörg Deeg
Genau das äh ist die eine Sache, die ihr sicher noch noch äh besprechen sollten, weil dieähm Planeten, äh wie ich habe schon gesagt, unser erstes äh Beobachtungsprojekt äh neunzehn93 das gestartet wurde, hat so einen Planeten versucht nachzuweisen, um einen Doppelstern und äh Planeten sind vielleicht im Moment die exotischen Planeten, die die bekannt sind.Wenn Sie Stattreg kennen, äh haben Sie vielleicht vom Planet Tattooin äh.
Tim Pritlove
Star Wars.
Hans Jörg Deeg
Star Wars, ja. Äh Star Wars. Äh wo eben ein Planet ist, der der zwei Sonnen hat, äh die ähmeine geht auf, die andere geht unter, das Licht ist verschieden äh äh die die Bedingungen ändern sich die ganze Zeit und diesen Planeten waren eigentlich eher,ist immer ein sehr sehr hypothetisch und die meisten haben wohl schon gedacht, dass es äh mhm dass es Science-Fiction ist eben, ne. Äh,Der erste von diesen äh Planeten wurde gefunden äh in Daten der der Kepler-Mission.Weil solche Planeten, wenn wenn die um den um den Doppelstand gehen und Transitz hervorrufen, dann äh haben die sehr sehr klare äh äh Signale,Transits äh.Sie nicht genau periodisch, weil der weil der Doppelstand selber sich sich eben ähm auch bewegt und äh sind Semiperiodisch, wenn der Planet vor demSternsystem vorbeigeht, Harz dran sind, aber wann Hartz dran sitzt, aber wann die genau auftauchen, hängt von der von der Phase oder von der Periode von der Position, von einem Doppelstand eben ab.Wenn man.
Tim Pritlove
Überhaupt noch eine normale Ägyptik, wenn da so zwei Sterne sind, also kann man sich das so vorstellen.
Hans Jörg Deeg
Uns mal die alle in der gleichen Ebene vorstellen, sowohl die Bahnebene vom Stern wie die Bahnebene vom,Planet um den äh um den Schwerpunkt des der,äh für um Transitz zu haben. Es es gibt Exoten, es könnte exotischere Konfigurationen geben, wo die beiden Bahnebenen geneigt sind gegenüber und leicht geneigt sind sie auch. Äh die, wo bisher gefunden worden sind.Noch nicht bekannt ist, ist, ob's wirklich steil zwischeneinander geneigt äh hat.Aber gut, äh es wurden die ersten gefunden äh vor,acht, 9 Jahren ungefähr, wo eben ein Planet, um um einen Doppelstand geht, der Doppelstand ist relativ eng zueinander, die haben also Perioden von äh,Wie war's? Ähm.Äh mehr etwas sieben Tage bis ungefähr 50 Tage haben die die Sternelperperioden und die Planeten haben relativ große Perioden äh für Transitsysteme jedenfalls. Ein paar.
Tim Pritlove
Sterne untereinander, dass sie sozusagen untereinander äh sich quasi einmal die Plätze austauschen. Aha.
Hans Jörg Deeg
Ja sieben Tage äh Periode vom Sturm, mindestens sieben Tage, das ist.
Tim Pritlove
Okay und die und die Planeten kreisen dann quasi um diesen gemeinsamen Schwerpunkt.
Hans Jörg Deeg
Reisen, um den gemeinsamen, die brauchen ungefähr eine Periode, die mindestens drei, vier Mal länger ist wie wie wie der Stern um sich selbstwenn die zu nahe in dem Stirn sind, haben die nämlich keine stabilen Obits äh und würden in den Sternen entweder stutzen oder oder oder äh raus äh katapultiert werden aus dem System.Äh jedenfalls wurden diese Systeme gefunden vor sieben, acht Jahren. Die ersten in der Kepler-Mission ähm und war wirklich unerwartet.Wobei wir haben natürlich die schon vor langer Zeit beobachtet, aber konnten auch versucht zu finden, aber konnten auch nicht wirklich sagen, ob das jetzt wirklich äh ob's die gibt oder nicht war. Daher wäre toll, dass dass die gefunden wurden.Mittlerweile gibt's aber bisher.Fast alle von von Capler äh gibt's ungefähr 7zehn so denke ich 17 Systeme von der Sorte. Äh Tes hat jetzt auch zwei Stück gefunden.Äh und die haben alle gewisse Eigenschaften, wo man noch nicht ganz sicher ist, wieso das sind alles Planeten, die mittlere Größe haben.Die Sterne aus irgendeinem Grund, wo es gibt's Theorien dazu. Ich denke, da setzt zu weiter reinzugehen. Die Sterne haben mindestens eine Orbit-Periode von 7 Tagen. Äh das ist reine Beobachtung bisher.Von den 15 bis 17 Systemen, die bekannt sind. Hat wahrscheinlich was mit der Entstehungsgeschichte zu tun. Das das äh Sternsysteme, die,untereinander mit schneller umeinander sich umkreisen. Es sind eigentlich häufiger und leichter zu beobachten, aber da wurden bisher keine Planeten drum ge.
Tim Pritlove
Ist denn äh die Optik, die man so äh jetzt bei Star Wars äh von Tatoin ähm bekommen hat, könnte man sich das dann auch so vorstellen, wenn es jetzt wirklich mal so ein habitabler äh oder halbwegs habitabler Planet wäre. Also da hat man so so zwei Sonnenuntergänge.
Hans Jörg Deeg
Ja ja, man hätte zwei Sonnenuntergänge,die werden immer relativ nah beieinander. Also die beiden äh von gesehen vom vom Planet aus äh,werden die Sterne nie weiter wie ich denke so fünfundzwanzig, 30 Grad auseinander.Aber der eine würde vor dem anderen untergehen und wenn das verschiedene Typen sind, würde sich dann auch ziemlich die die Farbe ändern, die die wir äh die wir in der Umgebung hättenDie könnten durchaus auch äh Leben unterstützen, also da gibt's schon Studien dazu. Äh wenn der Abstand von dem von dem ähm,Stammsystem groß genug ist, äh macht es keinen großen Unterschied, ob da jetzt äh ein Stern untergegangen ist oder beide,weil es relativ kurze Zeiträume sind wir haben auch Tag und Nacht und nachts äh bleibt die Temperatur innerhalb von zehn, fünfzehn Grad von der Tagestemperatur typischerweise. Daher macht esrelativ wenig aus. Also sie könnten durchaus auch auch äh leben neben Beherbergen diese Systeme. Daher,durchaus realistisch, dass es dass es vielleicht solche solche Systeme gibt und da auch Leben drauf ist. Also Tattoos können durchaus möglich sein.
Tim Pritlove
Das war meine Perspektive.
Hans Jörg Deeg
Bei der Plator-Mission hoffen wir übrigens, dass dass wir von diesen sekundären Systemen vielleicht dreißig, 40, 50 finden.
Tim Pritlove
Doppelsternsysteme an sich halt auch nicht selten sind.
Hans Jörg Deeg
Die sind ziemlich häufig, also knapp die Hälfte der Sterne ist ist in irgendeiner Art ein Doppelstern, wo viele allerdings sehr weit entfernt es sind von Hunderten und Tausenden von ostronomischen Einheiten. Äh.
Tim Pritlove
Zum Schluss noch mal so die die aktuelle Erkenntnis. Wie viel Planet gibt's da draußen? Wovon muss man jetzt ausgehen? Wie selbstverständlich, wie normal ist das?
Hans Jörg Deeg
Ja ganz grob ähm ähm wir wissen, dass ungefähr die Hälfte der der Sterne Planeten von irgendeiner Sorte haben. Also es ist ein extrem häufig. Äh wahrscheinlich haben die meisten Sterne.Meine ich jetzt normalem Hauptsequenzsterne. Äh dass die Planeten haben. Das ist echt.
Tim Pritlove
Einfach ergibt aus daraus wie einen Stern entsteht. Es bleibt immer was übrig und das.
Hans Jörg Deeg
Bildet sich diese diese Staubwolke erst, die sich dann abflachtÄh und es gibt da eine Scheibe und im Zentrum bildet sich der Stern und weiter außen bleibt Material übrig und das muss irgendwas machen früher oder später zieht sich das zusammen und es gibt Planeten, das.
Tim Pritlove
Hat er nur die Hälfte wahrscheinlich planiert.
Hans Jörg Deeg
Also Hälfte ist dieser Planeten, die wir im Moment entdecken können eben, ne? Das sind die etwas größeren Planeten, die in relativ kurzen Umlaufbahnen sind typischerweise. Da sind wir sicher.
Tim Pritlove
So etwas findet sich, okay, so was findet sich schon mal bei der Hälfte und die andere Hälfte hat wahrscheinlich auch irgendwas, da müssen wir blo.
Hans Jörg Deeg
Hat wahrscheinlich auch übers, das können wir unsere Sonnensysteme sein, wie unser Sonnensystem oder es könnte auch theoretisch sein, dass da eben keine Planeten sind, aber es ist eine Minderheit auf jeden Fall.Daher Planeten sind extrem häufig. Es gibt mit Sicherheit erheblich mehr Planeten wie wie Sterne. Eine Sache, wo auch jetzt die ersten Erkenntnisse übrigens kommen, ist äh Mohnthe um Planeten.Da gibt's zwei Kandidaten im Moment von sehr großen Monden um relativ massive Planeten,äh die über Transitz in der Kepler-Mission ähm als Kandidaten eben entdeckt worden sind äh wo auch,vielleicht, dass James Web mal nachhelfen könnte, sozu einem Transit weiter nachzubeobachten. Wir können vorausrechnen, wann die Transits geschehen in diesem System und das sollte das dann mal anschauen mit sehr hoher Präzision, bessere Präzision noch wie Kepler.Mir da wirklich äh was sehen, was wir sehen würden, wäre das erst der Mond oder erst der Planet vor dem Stamm vorbeigeht und dann der der andere Körper,Damit hätten wir praktisch zwei überlagerte Transitz, einem Hormon, einem vom Planeten, die verschiedenen tief sind und es gibt eine gewisse gewisse ähm.Äh Figur dann, ne, die sich beim nächsten dran sind, wieder anders aussehen würde, also in eine eine umlaufbaren Funkplanet später einen anderen.Das könnte schon nachgewiesen werden für relativ massive äh Mond ist das realistisch.
Tim Pritlove
Und das ist, ich meine, wenn man jetzt auch mal wieder hochrechnet, mit was es bei uns normal, was muss eigentlich auch äh sonst normal sein? Mone gibt's allein in unserem Sundsystem. Also man entdeckt ja äh am laufenden Meter nochmal neue.
Hans Jörg Deeg
Ja, es letztlich keine große Überraschung, wenn Monde gefunden werden und im Moment eher die Monde, die gefunden werden könnten, sind sehr massive, wie es in unserem Sonnensystem eben nicht,Der eine war zweieinhalb Adradien groß. Also der Mond ist zweieinhalb Adradien und der Planet äh in den Jupiter mäßiger.Eine Klasse, die wir eben vielleicht mal jetzt finden können, weil wir dafür die Empfindlichkeit haben, auch wenn die vielleicht insgesamt gesehen eher exotisch ist.
Tim Pritlove
Hans. Jetzt haben wir's eigentlich erstmal, wa.
Hans Jörg Deeg
Mhm, gut, ja, ja, ja. Ja, ja.
Tim Pritlove
Schönes Update, vielen Dank. Ähm ist auf jeden Fall eine Menge los äh am Himmel. Kann man sagen.
Hans Jörg Deeg
Dass das sicherlich, ja ja, es ist nach wie vor ein ein Feld, das äh sich schnell weiterentwickelt, äh wo nach wie vor.
Tim Pritlove
Dein Tipp? Gibt's noch ein haben wir noch einen neunten Planeten, den wir hier äh finden können.
Hans Jörg Deeg
Ja, den gibt's ziemlich wahrscheinlich, das das große Problem ist und und da sieht man, wie schwierig Planeten ist zum Teil. Wahrscheinlich hat's einen 9ten Planeten, aber wir sind nicht in der Lage, den genau festzustellen, wo er ist, weil der eben,Der ist so brutal weit auch nicht in Fern wahrscheinlich, so ungefähr hundert astronomische Einheiten oder so.Aber der äh und ist wahrscheinlich auch relativ groß, aber aber die da so dunkel, dass dass der bisher nicht gefunden worden ist. Äh,extremer Fall von einem Planet, der das sehr, sehr schwer äh entdeckbar ist und das sieht man irgendwie, wie welche riesigen Unterschiede es gibt. Es ist leicht, diese Hot Tubes um andere Sterne mittlerweile.Zu sehen, selbst Amateure haben Transitbeobachtungen da mittlerweile in großer Menge geliefert und ein,großen Planeten in unserem Sonnensystem, haben bisher selbst die besten Instrumente nicht wirklich finden können.
Tim Pritlove
Aber du hältst sie die These für durchaus wahrscheinlich.
Hans Jörg Deeg
Ja ich bin da zwar kein Experte auf diesem Thema, aber vorabweichungen der der Orbits von äh Neptun und Pluto äh und auch von der vorhanden von von der Ausrichtung der der Ort Cloud, der der Kometen im ähm,im Ort klaut, äh ist es wohl sehr wahrscheinlich ziemlich sicher, dass es noch ein weiteres massives Objekt äh weiter außen gibt.
Tim Pritlove
Es gibt noch viel zu entdecken. Hans, vielen, vielen Dank.
Hans Jörg Deeg
So ist es äh.
Tim Pritlove
Die Ausführung.
Hans Jörg Deeg
Danke Team für die Gelegenheit hier aus äh über darüber äh erzählen zu können.
Tim Pritlove
Gerne. Dafür ist das Format äh gedacht.
Hans Jörg Deeg
Noch einen schönen Aufenthalt in Teneriffa. Ja ja.
Tim Pritlove
Weitere Aufnahmen werden jetzt hier folgen auf dieser Reise äh und was das ist, das äh werdet ihr dann sehen. Da verrate ich jetzt erstmal noch nicht. Ja und äh vielen Dank fürs Zuhören und bis dahin sage ich tschüss und bis bald.

Shownotes

RZ100 Raumzeit und Gravitation

Über das Wesen der Raumzeit die Suche nach einer Erklärung für Gravitation

Newton und Einstein haben der Welt Formeln gegeben, die das Wesen unserer Welt und des Universums sehr akkurat und belastbar beschreiben. Sie haben uns den Zugang und die Nutzung des Alls eröffnet und viele Fragen über die Entstehung und Funktion des Weltalls beantwortet.

Doch noch mehr Fragen wurden aufgeworfen und bleiben vorerst unbeantwortet. Wir können das was, was wir erleben und nutzen gut mathematisch beschreiben, doch wissen wir auch, dass diese Beschreibungen ihre Grenzen haben. Diese zu durchschreiten ist eine Aufgabe der theoretischen Physik und Kosmologie, die auf der Suche ist nach einem noch besseren Verständnis dessen, was die Welt im innersten zusammenhält.

Dauer:
Aufnahme:

Lavinia Heisenberg
Lavinia Heisenberg

Wir sprechen mit Lavinia Heisenberg, theoretische Physikerin und Kosmologin an den Universitäten in Zürich und Heidelberg. Sie forscht an Modellen zur Beschreibung des Universums und erläutert, warum unser aktuelles Weltbild des Universums noch lange nicht auserzählt ist.


Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Tim Pritlove
Hallo und herzlich willkommen zu Raumzeit, dem Podcast über Raumfahrt und andere kosmische Angelegenheiten. Mein Name ist Tim Prittlaff und ich begrüße alle zur 100. Folge von Raumzeit,gar nicht so lange gedauert,äh muss man sich erstmal ranpirschen. Die äh erste Sendung von Raumzeit ist schon eine Weile her. Das ist Ende 2010 gewesen. Jetzt haben wir Anfang zwanzig zweiundzwanzig, also,na jamehr als elf Jahre und ich dachte mir so hm zur 100 könnte ich doch mal ein Thema nehmen, was vielleicht sonst nicht so auf der Agenda gewesen wäre und irgendwie gut zum Podcast passt.Und die Wahl fiel auf Raumzeit. Warum nicht mal in Raumzeit auch mal über die Raumzeit reden, beziehungsweisekosmischen Angelegenheiten, die ich am Anfang immer so andeute äh auch nochmal ein bisschen mit Leben füllen,mal so schauen was eigentlich unser Verständnis vom Universum derzeit so,ist. Und dafür bin ich nach Heidelberg gefahren und begrüße meine,heute nämlich Lavinia Heisenberg. Schönen guten Tag.
Lavinia Heisenberg
Hallo und guten Tag.
Tim Pritlove
Ja, herzlich willkommen bei äh Raumzeit. Navinia, du bist ähm,Physikerin, theoretische Physikerin, Professorin auch an der ETH in Zürich,sitzen wir jetzt gerade nicht in Zürich, warum sitzen wir jetzt in Heidelberg?
Lavinia Heisenberg
Ja, also ich bin jetzt seit äh November letzten Jahres ähm Professorin hier an der Uni Heidelberg.Ich habe noch eine Gruppe in Zürich und deswegen habe ich noch eine Affiliate an der ETH. Und pendele so bisschen hin und her.
Tim Pritlove
Okay. Und ähm ja warum fiel die Wahl auf Heidelberg dann? Mal was anderes ausprobieren.
Lavinia Heisenberg
Ähm ja also in der Akademie ist leider nicht so, dass man irgendwie frei den den Ort so ähm wählen kann. Also man bewirbt sich halt überall und ähm,Glück und ähm konnte dann nach Heidelberg kommen. Also nach einem ähm Auswahlverfahren äh habe ich dann die die Stelle hier bekommen,ist eine permanente Prüfstelle ähm und davor hatte ich nur begrenzte halt äh Stellen.
Tim Pritlove
Auch allgemein Physik oder ist das nochmal ein bisschen genauer eingegrenzt?
Lavinia Heisenberg
Also allgemein in in natürlich in der Physik, aber auch allgemein in der Akademie ist es so, dass man äh,keine Ahnung, dass man halt alle zwei, drei Jahre den Wohnort wechseln muss. Ein Postdock äh stelle hier, ein Postdock stelle dort und ähm genau.
Tim Pritlove
Schicksal ist das.
Lavinia Heisenberg
Genau.
Tim Pritlove
Aber man kommt schön rum und wir haben's auch sehr schön hier, wenn ich hier rausschaue, dann kann ich nur sagen, das war eine gute Wahl. Also hier blühen die Kirschbäume und es überhaupt alles ganz romantisch sowieso in Heidelberg weiß man ja.
Lavinia Heisenberg
Einem Blick auf ein Schloss äh vom Garten aus, ja ist nicht schlecht.
Tim Pritlove
Schlechter laufen können, ne? Ja. Ja, vielleicht mal so ein bisschen zu deiner äh Hysterie. Wie bist du denn äh zum zu Wissenschaft gekommen? Was was äh was hat dich da äh gereizt? Wie früh fing das an?
Lavinia Heisenberg
Also ich würde schon sagen, seit meiner Kindheit ähm ich denke schon, dass ich halt sehr, sehr neugierig war und immer erfahren wollte oder wissen wollte, wie gewisse Dinge funktionieren.Und ähm warum die Naturphänomene halt so funktionieren, wie sie funktionieren. Also es ging immer um diese Warum-Frage und das hat mich dann schon Stück für Stück da in Richtung Physik gebracht und ähm ich wollte auch Astronautin werden seit meiner Kindheit,und ähm und deswegen bin ich irgendwie von Raum und Zeit äh nicht so weggekommen.
Tim Pritlove
Was bestimmt der totale Terror für deine Eltern oder? Wolltest immer alles wissen und keiner konnte die richtigen Antworten geben.
Lavinia Heisenberg
Genau.
Tim Pritlove
Ähm du bist ja ursprünglich aus der Schweiz, oder? Also oder wo bist du großgeworden?
Lavinia Heisenberg
Ähm ich würde sagen eher aus aus Deutschland, aber ich habe schon äh äh,sehr sehr lange Zeit in der Schweiz äh verbracht. Deswegen ähm kriege ich diese Frage sehr oft gefragt. Ähm ich habe halt äh eine lange Zeit meines äh meine Karriere dort verbracht,aber ja ursprünglich komme ich aus Deutschland.
Tim Pritlove
Und bist du dann gleich mit Physik eingestiegen.
Lavinia Heisenberg
Genau, ich habe hier in Heidelberg Physik studiert. Mhm. Das Physikstudium äh abgeschlossen. Damals hatten wir noch nicht so dieses äh Bachelor und Mastersystem und habe dann direkt mein Diplom hier gemacht.Und dann ging es dann Richtung nach Genf mit meiner Doktorarbeit.Genau und ähm noch ein paar andere Stellen als als Prostorandin und irgendwann war ich dann an der ETH als als Assistentenprofessorin.
Tim Pritlove
Mhm. Worum ging die Doktorarbeit?
Lavinia Heisenberg
Doktorarbeit ging um die ähm Schwerkraft und zwar um die massive Schwerkraft. Also wenn man,nehmen würde, dass das Teilchen, was die Schwerkraft beschreibt, nicht masselos ist, sondern dass da,kleine, aber nicht verschwindende Masse vorhanden ist.Und ich habe dann äh von dieser Theorie sowohl dessen theoretische, als auch äh sozusagen äh phänomenoische Konsequenzen halt äh erarbeitet.
Tim Pritlove
Jetzt ist es aber so, bei den Physikern so habe ich immer den Eindruck so zwischen den Experimentalphysikern und den Theoretikern da,gibt's irgendwie, ich würde nicht sagen, Graben dazwischen, aber die sind irgendwie relativ klar äh definiert. Warum war das für dich von vornherein oder vielleicht war's ja auch gar nicht so, aber inwiefern hat es dich mehr in die theoretische Seite verschlagen, was,Was geht da so in einem vor für dass man zu so einer Entscheidung kommt.
Lavinia Heisenberg
Also ich denke mal ähm ich habe so verschiedene Sachen ausprobiert und das sollte man ja auch äh im Studium und ich habe zum Beispiel meine Masterarbeit ähm über die Simulation gemacht,Das war dann halt sehr sehr nomerierigich habe irgendwie ein Jahr lang rumprogrammiert und davon waren's irgendwie mehr als sechs Monate, dann halt die Buggy und ähm das hat mich nicht so gereizt und ähm da wurde mir immer mehr klar, dass ich in Richtung Theorie gehen will.Aber ich denke durch meinen Wunsch Astronauten zu werden, habe ich immer so diesen äh ja diesen Kontakt gehabt ähm zu Beobachtungen, zu Praxis,Ich wollte nicht einfach nur eine noch eine so ein zusätzliches theoretisches Modell aufbauen, sondern auch,mich mit den Fragen irgendwie auseinandersetze? Wie kann man überhaupt dann so ein Modell testen und welche Beobachtungen kann man wie verwenden und ähm habe dann auch zum Teil halt selber diese Daten genommen und sie bewertet und,habe gezielte Kollaboratoren ausgesucht, mit denen ich dann halt in diese Richtungen halt gehen konnte.
Tim Pritlove
Und der Astronautentraum ist jetzt schon ausgeträumt, oder? Ist das doch eine Option?
Lavinia Heisenberg
Glaub der stirbt zuletzt.
Tim Pritlove
Okay. Ja ähm jetzthabe ich ja schon äh im Prinzip alles äh verraten. Wir wollen so ein bisschen mal um die Raumzeit herum äh reden. Das ist ja nur ein Aspekt ähm des ganzen kosmologischen Geschehens. Aber so dieses diese Verständnis der Welt, also einBild zu entwickelnwie alles zusammenhängt so, das ist ja denke ich auch so das primäre Ziel eigentlich der theoretischen Physik. Hier geht's ja wirklich ums große Ganze und irgendwie ein möglichst vollständiges Bild zu gewinnen. Und das gibt es nicht,bisher.Es ist schon sehr viel äh herausgefunden worden und trotzdem ist es so ein Feld, wo man das Gefühl hat, man kommt irgendwie nicht so richtig ans Ende, weil äh umso mehr man erforscht, umso mehr Fragen entstehen.Trotzdem gab's ja einen,na ja, nicht nur einen. Mehrere Wendepunkte so in der Physik und in der Wissenschaft als als solche, die man ganz gut an einzelnen Personen festmachen kann. Sicherlich, was so das Verständnis des Großen und Ganzen betrifft,wo du da anfangen würdest, mir würde so Newton als Erster nennenswerter äh Punkt einfallen.Also die erste wirklich konkrete äh nachvollziehbare Formelsammlung sozusagen Betrachtung von von,Schwerkraft und wie alles zusammenhängt und damit ja auch das erste Mal so ein Bild, was auch über die Erde hinausging.
Lavinia Heisenberg
Also ich meine heutzutage verwenden wir immer noch die Nude,Theorie. Ähm wenn es um äh,Fragestellungen geht, die auf so relativ also so mittleren Skalen geschieht und,Nicht so, dass man irgendwie ähm Theorie irgendwie ersetzt hätte oder sie nicht mehr gültig wäre oder sowas. Also klassische Mechanik, die ihr Leben wie hier jeden Tag auf der Erde.
Tim Pritlove
Genau, auf der Erde funktioniert's super. Nur äh im Weltall halt nicht so richtig äh gut.
Lavinia Heisenberg
Genau, also wenn man dann irgendwann äh sehr hohe Geschwindigkeiten hat oder auch sehr hohe, sehr starke Schwerkraftpotenziale,dann stößt in die täusche Theorie an dessen Grenzen und muss ersetzt werden,und das ist genau das, was ein Stein gemacht hat, also ein Stein hat eine relativistische Version, den,Theorie sozusagen entwickelt und das ist die allgemeine Relativitätstheorie.Also man kann schon die New Tunnel Theorie verwenden, um zum Beispiel die Planetenbewegungen in unserem Sonnesystem zu berechnen,Gesetze und so weiter ähm aber wenn man dann halt genaue ähm äh Berechnungen machen will, muss man irgendwann halt diese relativistische,äh mit dazu nehmen,Das ist hier zum Beispiel wichtig für unsere GPS-Geräte und wenn wir,Ort viel genauer bestimmen wollen, dann muss man diese,relativistische Korrekturen dazu nehmen und nicht nur einfach äh den Theorie sozusagen nehmen.
Tim Pritlove
Ja sicherlich mit dieser Wissenschaftshistorie auch äh beschäftigt haben, muss man glaube ich zwangsläufig nicht wahr? Wenn man sich das äh theoretisch alles so reintun will, was würdest du sagen, war so der,eigentliche die eigentliche Leistung von von Juten oder was war,Was war sozusagen die Hürde, die dort genommen werden muss? Ich meine, mit so großen Entdeckungen ist ja immer das Problem, man weiß gar nicht, worüber man rüberspringen muss. So, man muss ja erstmal eine Intuition dafür bekommen, wo eigentlich dasProblem ist, wo warum man bisher einfach mit dem, was man sich bisher erdacht hat,zu Recht nicht äh weiterkommt. Was äh denkst du war da die eigentliche Leistung von von Juten, damit er überhaupt in äh zu diesen Gesetzen kommen konnte?
Lavinia Heisenberg
Ja, ich denke wahrscheinlich war das schon so der erste Schritt ähm die Naturphänomene halt ähm,Aktionen zu beschreiben oder dass man dann sagt ähm,okay ähm das funktioniert so, weil da diese Kräfte äh gibt und die wirken auf einem und die Objekte werden dann auf die Art und Weise dann bewegt und das heißt, er er hat dann so systematisch ähm,Das alles aufgrund von Aktionen halt beschrieben und das hat das dann zu einer ja richtigen Wissenschaft halt geführt.Nur zu sagen, das könnte so und so funktionieren, was ja bisschen Richtung Philosophie ging davor, denke ich,und dort hat man dann wirklich ähm gewisse Dinge beobachtet und gesehen, ja, wenn man da so ein Teilchen hat,ein Objekt und man ähm lässt es in Ruhe, dann wird es mit derselben Geschwindigkeit für immer weiterlaufen.Hat man daraus dann halt so eine Aktion gemacht.
Tim Pritlove
Also meinst mathematisch beschrieben? Genau, also. Mhm.
Lavinia Heisenberg
Genau, also das war dann äh die mathematische Sprache genommen, um die Phänomene zu beschreiben anhand von Gesetzen.
Tim Pritlove
Das hat so vorher noch nicht stattgefunden.
Lavinia Heisenberg
Auf die Art und Weise nicht, ja.
Tim Pritlove
Was war denn dann die Art und Weise, die es jetzt anders gemacht hat als vorher.
Lavinia Heisenberg
Also diese mathematische Beschreibung. Ich denke, davor war's eher so ähm fast so ein bisschen philosophisch.
Tim Pritlove
Gefühlt. Also es gab sozusagen keine. Also bis Newton gab es sozusagen überhaupt gar keine,formale Definitionen, wo man mit Zahlen arbeiten konnte, sondern es gab immer nur Erwartungshaltung, aber ich meine, man war ja auch vorher schon in der Lage, Brücken zu bauen und äh große,Gebäude schwierige, eigentlich ja schwierige mathematische Probleme wurden ja auch vorher in irgendeiner.
Lavinia Heisenberg
Ja ja, also Mathematik hat uns schon sehr lange begleitet. Aber ich denke ähm hat das dann halt oft diese allgemeine Fragestellungen, die eigentlich philosophisch waren, halt äh angewandt, aber mit Hilfe der Mathematik.
Tim Pritlove
Mhm. Jetzt ist äh Einstein natürlich so,größte Wendepunkt in dieser ganzen Frage. Da würde ich auch,so mit einsteigen, was die eigentliche mentale Leistung jetzt war, dass Einstein,diese Theorien entwickeln könnte. Man beschäftigt sich ja,mit dieser Frage ist es nicht so, dass man sich die ganze Zeit äh denkt so, was muss ich anders denken als vorher, damit ich überhaupt mal zu einem Ergebnis komme, weil alles, was bisher gedacht wurde, führt mich in die Sackgasse, also was was geht da vor in dem Kopf?
Lavinia Heisenberg
Also ich glaube ich habe grundsätzlich so bisschen äh Schwierigkeiten mit dieser Art von Fragestellungen, weil äh es es klingt so, als ob da so ein ein konkreten äh Moment gegeben hat, ähm wo man dann halt eine,momentane Leistung dazu irgendwie ordnen könnte. Er hat zehn Jahre lang dadran gearbeitet, oder? Und er hat an sehr, sehr verschiedenen Stellen,ähm äh gewisse Dinge aufgegeben und und die dann durch neue Sichtweisen ersetzt.Eine Sache war zum Beispiel, er hat dann halt aufgegeben, dass da so was wie eine Kraft äh vorhanden ist, also dass die Erde und der Mond sich halt anziehen, weil da halt so eine Kraft äh zwischen denen besteht, diese Schwerkraft, die,sofort äh von einem Objekt, also von der Erde zum Mond propagiert.
Tim Pritlove
Also unmittelbar.
Lavinia Heisenberg
Genau unmittelbar sofort, die immer da ist und ähm die mit unendlicher äh Geschwindigkeit sich äh von der Erde auf den Mond zum Beispiel propagieren würde.
Tim Pritlove
Und das war so noch so ein bisschen das Bild von Newton, dass das einfach immer alles da ist, dass es immer.
Lavinia Heisenberg
Genau, das ist immer alles da ist und da ist so was wie eine absolute Zeit und,so was wie ein absoluter Raum und zwischen den Objekten also gibt es dann halt Kräfte.Aufeinander wirken.Ähm für die Schwerkraft Einstein hat dann diese Sichtweise komplett aufgegeben und hat gesagt, da ist nicht so was wie eine Kraft, sondern er hat gesagt, ich nehme,den Raum, diesen diesen dreidimensionalen Raum und verbinde ihn mit der Zeit,habe ich meinen Raum Zeitkontinieur. Das sind Konzepte gewesen, die man sowieso schon kannte, eigentlich aus der Mathematik. Das ist nix anderes als Differentialgeometrie, was er gemacht hat,aber äh vor seiner Zeit haben die Leute diese mathematische Sprache sozusagen nicht auf die Physik angewandt, also,ja wie man sieht hatte im Grunde so wie Newton äh wieder versucht halt eine neue mathematische Sprache auf die Natur.
Tim Pritlove
Aber was hat ihn denn eigentlich gestört am Status Quo? Also ich meine, wenn man über so was nachdenkt, dann muss man ja irgendwas lösen, was bisher dahin als ungelöst galt. Was was waren sozusagen die Herausforderungen, die es zu Umschiffen galt?
Lavinia Heisenberg
So wie heute wusste man schon, die Grenzen der New Turnschild Theorie. Wenn man zum Beispiel Geschwindigkeiten halt hatte, die die die sehr, sehr hoch waren,oder die ähm.Gravitationspotenziale, die die sehr stark waren. Dann äh haben diese Berechnungen, die man mit den Theorie gemacht hat, äh nicht übereinstimmt mit den zum Beispiel Planeten, Bewegungen und so weiter.Also es äh es war einem schon klar, dass da irgendwas nicht ganz stimmt,Hat dann versucht irgendwie anzunehmen, dass da irgendwelche dunkle Objekte vorhanden sind, vielleicht so zusätzliche,Planeten, die die Planetenbewegung eventuell halt bisschen äh manipulieren würden, oder?Hat dann halt gezielt nach diesen Dingern geschaut und aber nie gefunden. Das heißt äh damals war es schon auch den Leuten klar, dass die Theoriegrenzen hat,dass sie nicht auf äh jedes System anwendbar ist, vor allem wenn das System halt hohe Geschwindigkeiten hat.
Tim Pritlove
Betraf das nur den Merkur oder betraf das auch noch andere Planeten.
Lavinia Heisenberg
Die Merkur-Bewegung äh war so, dass äh das Hauptproblem.
Tim Pritlove
Bei den anderen war hat's gepasst.
Lavinia Heisenberg
Genau, ja.
Tim Pritlove
Okay. Das heißt, man hat man hat über Kur beobachtet, man hat's mit Juden ausgerechnet hm und dann fehlte ein bisschen.Also wir reden ja nicht über große Abweichungen, sondern wir reden über geringe Abweichung.
Lavinia Heisenberg
Ja genau, also wie gesagt, man muss schon äh auf anderen äh auf andere Systeme gehen und um sehr viel größere ähm,Unterschiede zu merken oder auch zum Beispiel bei wenn man jetzt auf ISS geht, was ja um um die Erde herum ziemlich schnell äh,sich bewegt dann wühlen sich diese Effekte halt aufsammeln.Und das ist dann zum Beispiel bei,Bewegung genauso, dass wenn man das dann über Jahre halt mitverfolgt,summieren sich diese diese Fehler.
Tim Pritlove
Und das war das war sozusagen dann auch,nicht der einzige, aber eine der Ansatzpunkte, wo einfach klar war, das Modell bis hierhin funktioniert so nicht und Annahmen, die bisher in dem alten Modell gemacht wurden, müssen unter Umständen komplett über Bord,geschmissen werden, wie zum Beispiel diese Annahme, dass alles unmittelbar aufeinander wirkt.
Lavinia Heisenberg
Genau ja und man hatte auch ähm in der Zeit auch halt ähm Elektromagnetismus halt entdeckt und das ist halt eine komplett relativistische Theorie und,sind dann andere grundsätzliche Natursymmetrien halt mit drin, anstatt Galiläen, Transformationen sind da die Lorenz Transformationen ähm.Die die Hauptrolle übernehmen und ähm das war dann ja auch mit der Theorie nicht zu zu vereinbaren.
Tim Pritlove
Was machen diese Transformation?
Lavinia Heisenberg
Also die können zum Beispiel von einem Initialsystem zum anderen Initialsystem äh zum Beispiel wenn man.
Tim Pritlove
Mathematisches Modell erstmal oder.
Lavinia Heisenberg
Also das sind äh man könnte sagen, man hat zwei Beobachter, die ähm relativ zueinander sich bewegen.Und ähm wenn man die Gesetze, die Einbeobachter beobachtet,Gesetze des anderen Beobachters sozusagen umwandeln möchte, dann muss man diese Lorenz Transformationen anwenden.Und das sind dann zwei Initialsysteme und zwischen denen kann man sozusagen hin und her springen und ähm und die Gesetze sollten sozusagen nicht davon abhängen, äh in welchem Initialsystem man drin ist.Aber ein Schein hat auch ähm das aufgeben müssen und äh hat dann halt an den freien Fall gearbeitet, anstatt äh Initialsysteme.
Tim Pritlove
Wenn du sagst, okay, relativistische äh.Effekte, was muss man sich darunter vorstellen und was äh muss man verstehen, um das zu verstehen, was Einstein letzten Endes mit seinen Relativitätstheorien äh rausgehauen hat.
Lavinia Heisenberg
Ja, also eine der was was wir schon vorhin erwähnt haben, also da gibt's nicht so was wie ein absoluter Teil und absoluter Raum.Die sind relativ sozusagen. Die hängen sehr stark davon ab, irgendwelche Bewegung der Beobachter sich befindet.Der Beobachter halt ähm zum Beispiel durch Beschleunigungen und so durchgehen muss.
Tim Pritlove
Also mit Beobachter meinen wir quasi so die Wahl eines beliebigen Ortes.
Lavinia Heisenberg
Genau, also.
Tim Pritlove
Dem aus man alles andere betrachtet. Das ist der Beobachter.
Lavinia Heisenberg
Genau, der Beobachter, der könnte zum Beispiel hier in Ruhe sitzen und andere beobachtet, könnte dann irgendwie im Zug ähm sitzen, aber eine gewisse Geschwindigkeit haben.Und ähm ein Beobachter könnte auf der Erde sein und an an ein anderer Beobachter irgendwo,Weltraum in einem Raumschiff.Ich denke, das fundamentale in der Einstein steht Theorie war wirklich diese Idee aufzugeben, dass so was wie eine,Zeit vorhanden ist und sowas wie ein absoluter Raum vorhanden ist.Und leider hat er dort nicht aufgehört. Der hat das nämlich noch noch abstrakter gemacht und um das mathematisch richtig formulieren zu können.Er hat dann auch gesagt, dass wenn man jetzt Raum und Zeit zusammen tut in diesem Raum Zeitkontinuier, dann kann man.Eigenschaften, dieses Raum-Zeit-Kontinuum nehmen, um die Schwerkraft zu beschreiben,die Eigenschaft, die er gewählt hat, war die Krümmung.Er hat dann die These aufgestellt und behauptet, dass die Schwerkraft gleich ist der Krümmung dieses Raumzeitkontinenums.Das ist jetzt sehr abstrakt und sehr mathematisch, ähm aber im Grunde genau hat er wiederum diese differential geometrischen äh,Ideen, aus der Mathematik dann auf die Schwerkraft angewandt.
Tim Pritlove
Ich bin's nochmal so ein bisschen auf diese einzelnen Begriffe auch runterbrechen, damit das irgendwie auch äh klar wird. Ich meine, wenn du sagst, es gibt keinen absoluten Raum. So, da müssen wir vielleicht erstmal verstehen, okay was,Was wäre denn ein absoluter Raum? Also wenn du sagst absoluter Raum, dann ist es die Vorstellung, dass quasi alles so ein dreidimensionales statisches,Gebilde ist, in dem sich alles so bewegt, so wie unsere persönliche Wahrnehmung, unserer Umwelt ja normalerweise,ja, wir beide sitzen jetzt hier in einem absoluten Raum, also,in unserer Wahrnehmung, weil alles hat irgendwie genau einen Ort und und und alles verhält sich zueinander.Identisch, ja? Das,ist quasi das ist für uns der absolute Raum in dem alles gleich ist.
Lavinia Heisenberg
Man könnte sagen, man kann jetzt diesen diesen Raum hier nehmen, in dem wir hier sitzen und wir haben irgendwo an der Wand hoffentlich auch eine Uhr, die tickt. Ähm.
Tim Pritlove
Haben wir nicht, aber wir denken uns jetzt mal gerade eine.
Lavinia Heisenberg
Genau ähm mit mit diese mit der Hilfe von dieser Uhr, die tickt.Und mit diesen Linien, die ich jetzt hier durchgezogen habe, kann ich meinen Raum und meine Zeit äh beschreiben und dann kann ich auch die physikalischen Vorgänger hier auch beschreiben und das ist alles.
Tim Pritlove
Zeit in dem absoluten Raum würde bedeuten die Uhrzeit, die von dieser Uhr angezeigt wird.Gilt quasi für jedes für jeden Teil dieses Raums auf die gleiche Art und Weise. Und das ist ja so die Vorstellung, glaube ich, die man bis dahin immer gehabt hat.
Lavinia Heisenberg
Genau, also das heißt, wenn man am Ende des Universums gehen würde?In die unendliche Ecke an das Universums. Ähm dort würde die Uhr genauso ticken und und es würde genauso funktionieren wie hier. Das wäre das das wäre dann sozusagen die Annahme von Newton.
Tim Pritlove
Das heißt, sie würde überall auf dieselbe Art und Weise gelten und das ist ja dann genauso wie die Annahme mit der Gravitation bei Newton, dass dass immer alles überall sofort gilt und dass immer alles.Auf die gleiche Art und Weise überall im Raum identisch ist für alle Beobachter.Nur weiß man, dass das nicht so ist und mit welchem Gedankenmodell kann man sich das schnell klarmachen, dass das nicht so ist.
Lavinia Heisenberg
Also dieses Modell gilt äh ist vollkommen in Ordnung,Wie ich gesagt habe, wenn man jetzt ähm ein ein ein Auto nimmt, das irgendwie sich bewegt innerhalb von diesem Raum, äh in dem wir uns befinden. Das Problem kommt nur, wenn man halt,auf hohe Geschwindigkeiten geht.Und ähm und das wiederum ist sehr schwierig für uns in unserem Alltag uns vorzustellen. Deswegen hat ja ein Stein halt all diese ganzen Gedankenexperimente gemacht. Und um das auch mit der sozusagen mit.Mit Elektromagnetismus und also mit diesen Lorenz-Transformationen, die ich erwähnt habe, in Verbindung zu bringen, ähm war zum Beispiel eine ähm eine essenzielle Gedanke, dass da so was wie eine absolute Geschwindigkeit gibt,ein ein Limit äh für für Geschwindigkeiten. Man kann nicht schneller sein als als das Licht. Und wenn man das dann annimmt,und in die Theorie einbaut, dann sind es halt die Konsequenzen, dass die Zeit ähm anders verlaufen muss,dass dieses Konzept von Raum Zeit sich ändert, wenn man, wenn man so was wie eine absolute absolutes Maximum für für die Geschwindigkeit hat.
Tim Pritlove
Aber was ist der Beleg, also was ist wie wie ist er darauf gekommen woraus leitet man das ab, dass es eine maximale Geschwindigkeit geben muss.
Lavinia Heisenberg
Das ist eine Annahme, das ist eine These und das kommt vom Elektromagnetismus, also man man kann auch Experimente machen, zum Beispiel sie nehmen ein Licht und schicken ein Lichtsignal,und setzen sich aber auf einem sehr schnellen ICE-Zug und dann, wenn sie an Newton glauben würden,dann müsste jemand, der am Ende ähm,äh des Tunnels irgendwie steht und diesen Zug äh beobachtet ähm dann müsst ihr diese Person annehmen, dass das Licht, was bei ihm ankommt ja Lichtgeschwindigkeit plus,ihre und die Geschwindigkeit des Zuges haben müsste, oder? Und aber man misst das und man sieht, das das ist gar nicht so.Das Licht ist immer noch genauso schnell wie wie ohne diese Geschwindigkeit.
Tim Pritlove
Das heißt, es ist schon eine konkrete Beobachtung gewesen. Man hat das experimentell nachweisen können. Man hat einfach gemerkt, nur weil die Taschenlampe jetzt schneller äh durchGegend gefahren wird äh bewegt sich das Licht nicht schnell. Es kommt nicht früher an.
Lavinia Heisenberg
Genau, ja. Also mein Mann.
Tim Pritlove
Waren denn das für Experimente bitte vor 120 Jahren oder so, mit denen man Lichtgeschwindigkeit so genau messen konnte?
Lavinia Heisenberg
Ich denke mal ähm wahrscheinlich äh diese ganzen äh Beobachtungen aus dem Sonnenfinsternis.Dass man da ähm,man man wusste sozusagen von von den nahen Sternen um uns herum, wie welchen Abstand sie haben,Andere Messungen, die wir machen und da kann man da ja genau sehen, ähm wie wie lange sozusagen das Licht von diesem Stern braucht, um um bei uns anzukommen.Aber ich kenne mich damit überhaupt nicht aus und ich ich bin da eher überfragt, welche konkrete.
Tim Pritlove
Gehen wir da nicht weiter rein, aber ähm,Es gibt die Feststellung das Licht überschreitet diese Geschwindigkeit nicht. Jetzt hätte man ja auch noch sagen können ja gut, das Licht äh ist vielleicht nicht so schnell, aber vielleicht ist ja irgendwas anderes schneller.
Lavinia Heisenberg
Ja, das das könnte schon sein, ja.
Tim Pritlove
Das wusste man halt nicht. Ja. Also.
Lavinia Heisenberg
Ist eine Annahme, denn.
Tim Pritlove
Eine Annahme. Okay, gut. Das heißt, wir haben.
Lavinia Heisenberg
Bis jetzt haben wir nix sozusagen beobachten können oder beobachtet, was irgendwie schneller wäre. Deswegen gilt diese Annahme immer noch.
Tim Pritlove
Okay,Versuche mich jetzt nur so ein bisschen in diese Denkweise reinzudenken, wie wie man denn überhaupt äh äh dahin gekommen ist und das ist halt jetzt sozusagen durch diese Entdeckung des Elektromagnetismus, also der der im Wesentlichen vor allem die Erkenntnis war,dass es sich eben bei Magnetismus und Elektrizität um dieselbe Kraft,handelt, dass sie äh direkt miteinander zu tun haben und letzten Endes dieselbe Kraft sind und dass eben Licht letzten Endes,Elektromagnetismus ist und dass das ähm ja bestimmten Regeln äh genügt und unter anderem eben einfach eine maximale Geschwindigkeit hat und äh,man ging schon damals davon aus, dass nichts schneller sein kann als Licht, weil er Licht so ein bisschenInbegriff eigentlich des Unendlichen für uns ist, also der unendlichen Geschwindigkeit, weil wir nehmen ja Licht immer wahr, als etwas, was auch irgendwie immer sofort da ist. Manirgendwie jetzt hier auf die Berge und man sieht da oben äh die höchsten Bäume äh stehen und nichts würde einem das Gefühl geben, dass es dauert, bis diese Informationen zu uns kommt.
Lavinia Heisenberg
So wenn sie aber so ist es genau, wenn man ein bisschen weiter weggeht ähm,und ähm sagen mal, früher hat man wahrscheinlich auch mit Feuer ähm quasi Lichtsignale geschickt und bis es einem anderen Dorf irgendwie angekommen ist, hat's ja auch irgendwie paar Sekunden gedauert.
Tim Pritlove
Wie spielt das jetzt sozusagen in diesem absoluten Raum rein? Und der These, dass es diesen absoluten Raum nicht geben kann.
Lavinia Heisenberg
Was was spielt da für eine.
Tim Pritlove
Na ja, jetzt wissen wir einfach, dass das etwas,etwas dauert, also dass etwas eine maximale Geschwindigkeit hat, heißt ja dann im Umkehrschluss, nichts kann unendlich schnell sein,wenn nichts unendlich schnell sein kann, dann kann es eben die Gravitation nicht nicht sein und das bedeutet ja auch, dass die Dinge nicht überall gleich gelten.
Lavinia Heisenberg
Also wenn man zum Beispiel irgendeine Änderung ähm irgendwo im Universum wenn es passiert wir stellen uns vor die Sonne auf einmal verschwindet aus irgendeinem Grund.Dann würde das nicht instantan an uns weitergegeben diese Information, sondern die würde halt eine gewisse Zeit brauchen, um um bei uns anzukommen,Das heißt, wenn es auch andere Phänomene geschehen, wenn, keine Ahnung, wen irgendwelche Dinge aufeinander knallen oder oder irgendwelche Ereignisse stattfinden, die würden diesen lokalen Raum Zeit um sich herum ändern?Dessen Informationen würden wir halt ähm verspätet irgendwann dann auch mitbekommen.
Tim Pritlove
Auf die Kernthese zurück. Es gibt keinen absoluten Raum und es gibt keine absolute Zeit. Wir hängt Zeit und Geschwindigkeit zusammen, was was für ein Bild von Zeit muss man haben.Was ist Zeit.
Lavinia Heisenberg
Ja, das ist wiederum fast schon philosophisch. Also ähm für uns ist.Muss man natürlich halt einfach von dem Beobachter ausgehen, was ist die Zeit und das ist ja die Zeit, die die Person,wahrnimmt, indem es einen Maßstab nimmt, um zu sehen, wie gewisse Phänomene stattfinden, zum Beispiel ein Zerfall oder oder,gewisse Dinge älter werden oder es könnte zum Beispiel einen einen Ticken einer Uhr sein oder es könnte eine ähm oder irgendwelche Phänomene zwischen den ähm,wo die Teilchen irgendwelche ähm Zustände wechseln und wie wie benutzen das, um um sozusagen zu sagen, wie unsere Uhr tickt.Aber als äh absolute Erklärung, was was Zeit ist, dass es dann schon schwierig. Also es gibt so ähm Ansätze, wo man versucht ähm,Raum und Zeit aus äh aus der Quantenmechanik irgendwie ähm zu kriegen, einfach wo man dann sagt, da ist nicht so was wie Raum oder Zeit.Da gibt's nur halt irgendwelche ähm Quanten ähm Zustände.Diese Quantenzustände leben in einem Hibitraum und das wird alles nur um das sind alles nur mathematische Gegebenheiten sozusagen, aber diese Quanten,Zustände haben irgendwelche Beziehungen oder Relationen und aus denen irgendwie entsteht dann Raum und Zeit und,Das sind sehr, sehr abstrakte Ideen und ähm Ansätze sozusagen, wie man dann versucht, äh Raum und Zeit äh mit der mit mit Quantenmechanik irgendwie in Verbindung zu bringen.
Tim Pritlove
Der Schritt geht mir vielleicht schon ein bisschen zu weit. Weil ich glaube viele scheitern so ein bisschen da dran äh Zeit eben nicht als etwas Absolutes,anzusehen, weil wir's halt einfach anders,weil wir's einfach anders äh erleben, weil wir eine andere Forschung davon haben. Zeit ist sozusagen das, was was alles ordnet. Die ganze Welt schreitet in einem fort auf einer Zeitachse nach vorne undund so nehmen wir die Änderung wahr. Aber letzten Endes ist Zeit, eigentlich nichts anderes als,unsere lokale Wahrnehmung von der Veränderung des Raums.
Lavinia Heisenberg
Genau ja die Veränderungen, die um uns herum passieren, genau.
Tim Pritlove
Unendlich großen Bibliothekszimmer in dem wir hier sitzen halt auf diese Uhr starren dann ist halt irgendwie die Zeit an der Stelle wo die Uhr hängt und die Zeit die äh am Ende diesesnicht unendlich großen Raums, aber dieser großen äh äh Raums äh ankommt sozusagen. Zwangsläufig mit einer Verzögerungverbunden, weil wir diese Wahrnehmung der Änderung der Zeiger, die so langsam voranschreiten, später wahrnehmenweil es ja nicht schneller sein kann als das Licht, weil es eben diese maximale Geschwindigkeit gibt und deswegen ist es eben,nicht absolut, sondern es ist halt relativ relativ zu der Beobachtungsposition selbst. Das ist das, was Relativität letzten Endes ausdrückt. Das ist einfach die Welt,anders ist, je nachdem, wo man sich befindet, relativ zu, wo sich alle anderen befinden. Genau. Kann man das so zusammenfassen?
Lavinia Heisenberg
Genau, also man man kann sozusagen ein ein Zeit und einen Raum für einen Beobachter hier definieren und einen Raum und Zeit dort,aber die alle sind verknüpft. Also man kann das schon mathematisch berechnen, wenn wir diese Raumzeitzustände hier so haben,und zwischen uns sagen wir, befinden sich diese Art von Materieformen, können wir genau berechnen, wie Raumzeit, sagen wir, am Ende dieses Raumes,auszuschauen hat.
Tim Pritlove
Also Raum und Zeit und diese Geschwindigkeit, dass die Geschwindigkeit konstant ist,das war so im Prinzip die Essenz dieser speziellen Relativitätstheorie, also des ersten Traktats, was was Einstein rausgebracht hatDas war aber damals, wenn ich das so richtig sehe, auch nur so was irgendwie veröffentlicht wurde und nicht automatisch zu irgendeiner äh Weltreaktion geführt hat.Oder? So war das doch.
Lavinia Heisenberg
Ja, ich denke mal, als ähm Einstein damals seine Theorie entwickelt hat, ähm ja, waren viele schon skeptisch und ähm es gab ja auch keinen wirklichen Bedarf,es gab schon so ein paar ähm Dinge, die man vielleicht nicht genau erklären konnte, wie wir erwähnt haben, zum Beispiel mit mit der Merkur-Bewegung.Ähm aber es gab es war einfach nur eine so ein ja mathematische Vorstellung von dem oder? Es gab es es gab keinen richtigen Bedarf für seine Theorie.Er hat's trotzdem weiter gemacht und er hat dann halt konkrete Voraussagen gemacht und man ist dann gegangen und hat diese Voraussagen gecheckt.Und äh als man dann rausgefunden hat, oh das stimmt, ähm dann hat man halt angefangen ihn in ernste zu nehmen.
Tim Pritlove
Das war jetzt schon diese äh Geschichte mit der Expedition zum Richtung Nordpol und der Beobachtung des SternsAber das, nee, das bezog sich doch auf die allgemeine Relativitätstheorie. Also was hat denn diese spezielle Relativitätstheorie bewiesen?
Lavinia Heisenberg
Also die spezielle Relativitätstheorie, also.Ich würde sagen in der Form die gab's ja schon irgendwie dank äh Lorenz und wir hatten ja schon die Lorenz Transformationen ähm,Ich denke mal ähm durch die spezielle Relativitätstheorie hat er dann halt Elektromagnetismus äh in eine vollkommene Theorie ähm,mathematisch halt darstellen können und beschreiben können. Und das hat halt davor gefehlt.Man hatte zwar die Mixbegleichungen, ähm aber ein Stein hat sie dann in eine, in eine richtige Relativitätstheorie eingebraucht.
Tim Pritlove
Gleichung ist das, was was den Elektromagnetismus.
Lavinia Heisenberg
Genau, was was das Phänomen von von Elektromagnetismus beschrieben hat. Und wenn man die spezielle Realitätstheorie nimmt und,Bestimmte äh Voraussagen macht, wie zum Beispiel ähm diesen Fotoeffekt, was ja Einstein ja auch vorher gesagt hat und deswegen hat er auch einen Nobelpreis bekommen.
Tim Pritlove
Für den Fotoelektrischen Effekt. Was beschreibt der fotoelektrische Effekt.
Lavinia Heisenberg
Genau, also das sind dann im im Grunde ähm sind es dann ähm also man man hat halt so ein so ein Modell, man man denkt dann.Da ist dann halt unser Atom, das ist ja so was wie ein wie ein Kern und um diesen Kern herum bewegen sich die Elektronen und die können irgendwelche Energiezustände einnehmen.Je nachdem auf welchen Energiezustand sie sind, mhm schicken sie gewisse Photonen heraus, also gewisses Licht und die kann man dann halt beobachten und im Grunde ging es darum, diese Möglichkeit diese Zustände zu beobachten.
Tim Pritlove
Das heißt, er hat eigentlich auch schon im Kleinsten gearbeitet und gar nicht mal nur im im Größten. Ja. Obwohl letzten Endes die spezielle Relativitätstheorie versucht hat, eigentlich das Große zu fassen.
Lavinia Heisenberg
Genau, also die ähm die Verallgemeinerung sozusagen zu der allgemeinen Relativitätstheorie die war dann natürlich schwierig, weil es halt auf äh,Das Ganze ging also auf das größere, auf diese größeren Skalen und ähm dafür hat er dann halt zehn Jahre gebraucht,der speziellen Realitätstheorie zu der Allgemeinen.
Tim Pritlove
Mhm. Okay, dann gehen wir noch mal diesen Schritt. Also in diesen ganzen zehn Jahren war auch diese spezielle Relativitätstheorie,keinen Weltenbewegendes,Ding in dem Sinne. Also er hat so glaube ich als Person zwar sicherlich einen Namen äh gehabt, aber es war jetzt nicht so, dass schon die spezielle Relativitätstheorie allein die Dinge ins Wanken gebracht hat.
Lavinia Heisenberg
Ich finde, ich finde das jetzt nicht so sagen. Also ich bin kein keine ich bin keine Expertin, was die Geschichte angeht. Deswegen, ich glaube, ich bin da ein bisschen überfragt.Ähm aber ich würde schon sagen, dass das alles ähm,so Anfang 1900 Ingwers, ähm dass da schon viele Sachen passiert sind, viele in Bewegung gekommen ist und die spezielle Relativitätstheorie und dann,Quantenmechanik und und daraus dann die Quantenfeldtheorie, also ähm da da ist schon viel passiert und ähm,Und ich glaube nicht, dass man dann sagen könnte, ja es es fand irgendwie statt. Also für die Schwerkraft stimmt schon, dass da keinen wirklichen wirklichen Bedarf da war.Aber ähm,Ähm alles, was um uns herum geschah und und diese ganzen also die Teilchenphysik und und da hat man halt immer wieder neue neue Sachen dazu entdeckt. So man hat irgendwie gesehen, da gibt's sowas wie Photonen und Elektronen.Und ähm und das ist genau diese dass diese Elektronen halt, wenn sie Zustände wechseln, halt Photonen schicken können,sowas wie Neutrinus gibt und noch viele, viele andere Teilchen. Und Stück für Stück hat man dann ganz, ganz viel Wissen angesammelt.
Tim Pritlove
Ich versuche jetzt auch nur zu verstehen, was jetzt sozusagen durch diese allgemeine Relativitätstheorie dazugekommen ist. Also was ist das das das inwiefern hat sich das Bild, das Gesamtbild, was aus seiner Arbeit hervorgegangen ist, jetzt nocherweitert, was war was war jetzt das Problem, was er lösen wollte? Ich meine vorher die spezielle Relativitätstheorie liegt ja jetzt erstmal so ein bisschen so.Das ist so Groundwork so. Okay, ich gehe davon aus, es gibt keinen absoluten Raum, es gibt keine absolute Zeit, alles ist irgendwie relativ zueinander. Lichtgeschwindigkeit ist absolut so, kann man sagen, ja okay, alles klar. Das Lebenäh geht jetzt äh weiter. Die allgemeine Relativitätstheorie bringt ja jetzt quasi die Gravitation überhaupt das erste Mal,mit ins Spiel, weil man das.
Lavinia Heisenberg
Genau, er muss jetzt die Schwerkraft, mit diesen Ideen in im Anklang bringen, dass das.
Tim Pritlove
Mhm. Das war sein Ziel.
Lavinia Heisenberg
Das das liegt halt begrenzt ist und ähm das gewisse Phänomene halt diese,Lorenz Transformation folgen und ähm dass sowas wie absoluter Raum und Zeit nicht gibt. Das musste er ja jetzt mit mit der Schwerkraft in Verbindung bringen.Aber das kann man ja nicht mit der Theorie.
Tim Pritlove
Und da hat er dann zehn Jahre drüber nachgedacht.
Lavinia Heisenberg
Also genau, das heißt, der musste dann halt eine Theorie entwickeln, die genau mit diesen ganzen Beobachtungen.Übereinstimmen würde oder halt zusammen Hand in Hand gehen konnte.
Tim Pritlove
Dann schauen wir uns doch mal an, was jetzt sozusagen das Modell ist, was daraus herausgekommen ist aus dem ähm aus dieser Betrachtung.Einstein ist das immer so ein bisschen so, man meint das immer so zu kennen und so ja allgemeine Relativitätstheorie, alles ist anders und jetzt gibt's halt irgendwie Raumzeit.Aber da stecken ja eigentlich sehr viele Erkenntnisse gleichzeitig mit mit drin.Was beschreibt die allgemeine Relativitätstheorie und welches Bild der Welt ist letzten Endes daraus entstanden.
Lavinia Heisenberg
Also daraus ist halt wie wie ich gesagt habe, das abstrakte Bild entstanden, dass die Schwerkraft ähm nix anderes als als die Krümmung des Raumzeits.Das war seine Idee oder seine These, die er dann aufgestellt hat. Also er hat gesagt, da gibt's so was wie ein wie ein diesen diesen abstrakten Raum Zeit und,Wenn man jetzt sich irgendwas äh irgendwie so einen flachen Raum Zeitkontinenum vorstellen würde, das ist komplett flach,Das würde man mit einer Minkowski beschreiben,ähm und jetzt tut man sowas wie einen massiven Objekt dadrauf, so wie zum Beispiel auch vom Trampolin oder.Würde dieser dieser dieses flache Raum Zeit kontinuieren würde, dann gekrümmt werden? Wäre nicht mehr so flach.Und und wenn man jetzt noch einen zusätzlichen Objekt dazu tut war seine Behauptung, dass die Schwerkraft ähm dadurch gespürt wird, dass diese andere große Objekt ja den Raum gekrönt hatte.Dieser kleinere zweite Objekt fühlt dann diese Krümmung äh dieses Raumzeit-Kontinuums.
Tim Pritlove
Dieses zweidimensionale Modell ist für uns glaube ich ganz gut,Um das überhaupt erstmal überhaupt erstmal was greifbares zu haben, nicht so dieses dieses durchgebogene äh Trampolin. Trotzdem muss man das natürlich im Kopf schon dann aber auch auf einen dreidimensionalen Raum erweiter.
Lavinia Heisenberg
Vierdimensionalen Raum.
Tim Pritlove
Letzten Endes einen vierdimensionalen Raum. Aber ich versuche gerade mal so ein bisschen die Brücke äh zu schlagen. Denn,Die Kernaussage ist ja, dass die Zeit relativ ist und die Zeit drückt sich aus,durch diese maximale Geschwindigkeit, in der eine Änderung kommuniziert werden kann. Das ist ja letzten Endes,Licht oder irgendeine andere Strahlung, Licht ist ja nur ein Teil dieses Spektrums, den wir halt mit unseren Augen sehen können, aber der gesamte Elektromagnetismus ist ja quasi,maximal mit dieser Geschwindigkeit unterwegs, auch ja nicht unbedingt immer in dieser Geschwindigkeit, aber eben nicht schneller als in dieser Geschwindigkeit. Das heißt, jede Änderung und damit eben unsere Vorstellung von Zeit, weil sich Dinge ändernwird maximal mit dieser äh Geschwindigkeit,kommuniziert. Wenn jetzt der Raum, in dem sich diese Strahlung ausbreitet, diese Kommunikation sich ausbreitet, gekrümmt wird, also in dem Fall.
Lavinia Heisenberg
Quasi.
Tim Pritlove
Genau, ne, also also äh bleiben wir mal bei dem Trampolinbeispiel. Ich lege da jetzt so eine dicke, fette Stahlkugel rein, die dann äh das alles so nach unten zieht.Dann bedeutet das ja, dass diese Kommunikation, die vorher eine gerade Linie beschrieben hat, jetzt durch diese Krümmung durchgehen muss,und wieder nach oben und auf die andere Seite kommt und damit ihr einen längeren Weg beschreibt. Und wenn man nicht schneller sein kann,die Lichtgeschwindigkeit einfach ein Maximum hat, dann dauert es halt entsprechend länger.Das heißt, die Zeit dehnt sich aus mit dem Raum.
Lavinia Heisenberg
Also.Ja, also man man könnte dann halt sagen, dadurch, dass dass das Licht, was geschickt wird, halt diese ähm wie haben sie sie genannt, ähm die Dellen, also diese diese Krümmungen.
Tim Pritlove
Ja die Vertiefung, wer auch immer.
Lavinia Heisenberg
Genau ähm weil das Licht halt diese Vertiefungen spürt und nicht mehr auf einer geraden Linie.Sich bewegt, das heißt das Licht selber wird gekrümmt und das war ja seine Vorhersage und man hat das dann halt in diesem Sonnenfinsternis auch.Beobachtet und und dadurch wurde er halt äh von von einem Tag auf den nächsten super berühmt.
Tim Pritlove
Ja, weil das das war ja im Prinzip die die Vorhersage. Ich versuche jetzt nur gerade mal so zu verstehen, was das bedeutet ein vierdimensionalen Raum zu haben, weil wir denken ja nicht so. Wir denken ja nicht in.
Lavinia Heisenberg
Das kann keiner. Also ich kann keinen vierdimensionalen Raum mir vorstellen. Das beruhigt mich jetzt. Ja, das kann keiner.
Tim Pritlove
Auch nicht. Das beruhigt mich jetzt sehr. Ja. Aber trotzdem ist es so.
Lavinia Heisenberg
Aber genau, aber es ist halt eine mathematische, abstrakte mathematische Beschreibung. Und dieses zweidimensionale Bild soll uns ja nur helfen, um das zu verstehen, aber im Grund ist es nur ein ein ja mathematischer Hilfsmittel.
Tim Pritlove
Diese Erklärung, dass die Gravitation letzten Endes nur eine Krümmung ist, also eher eine ein Abfallprodukt. Man geht einfach einen längeren Weg, weil der Raum, in dem man sich bewegt, ist halt verzerrt. Man bewegt sich nach wie vor genauso,schnell oder kann zumindest nicht nicht nicht schneller gehen, nur weil der Raum sich auf einmal ausdehnt, kann ich ihn nicht schneller durchschreiten, also,muss ich.
Lavinia Heisenberg
Da muss man vorsichtig sein mit solchen.
Tim Pritlove
Vorsichtig mit den Aussagen. Ich lasse mich sofort korrigieren.
Lavinia Heisenberg
Also wenn wenn zum Beispiel das Universum, das tut es ja eigentlich, wenn es irgendwie sich beschleunigt, expandiert, dann kann man im Grunde schon äh äh auf auf andere.
Tim Pritlove
Vielleicht das Universum erstmal raus, nur um erstmal zu verstehen, wie die Krümel sich, sagen wir mal, konkret jetzt in unserem Sonnensystem äh,niederschlägt, weil die eigentliche Frage war ja immer so, okay warum dreht sich jetzt die Erde um die Sonneso und das Bild war na ja klar wegen Schwerkraft.So und das alte nytonische Bild ist, dass das eben so eine starre Verbindung ist, die unmittelbar ist und im Prinzip war ja ein äh Ansage so, ja nee ist nicht unmittelbar, das dauert irgendwie eine Weile.Trotzdem war ja immer noch die Frage, okay, was ist denn dann diese Kraft, selbst wenn sie nicht unmittelbar ist, wodurch warum ziehen die sich äh eigentlich an?Und letztlich ist ja die Raumkrümmung, die Erklärung,Ja, sie ziehen sich nicht in dem Sinne an, sondern beide Objekte, sowohl die Sonne als auch die Erde im Kleinen.Krummen diesen Raum, so dass die anderen Objekte sich zwangsläufig in diesem Raum anders bewegen müssen.
Lavinia Heisenberg
Genau, die die ziehen sich angezogen, weil da halt diese Vertiefungen im Raum entstehen.
Tim Pritlove
Das heißt, die Erde dreht sich gar nicht um die Sonne, sondern sie schießt eigentlich die ganze Zeit geradeaus, weil was anderes kennt sie eigentlich gar nicht, nur,der Raum nicht mehr geradeaus ist, sondern der Raum ist halt so um die Sonne herum gekrümmt, dass eben ja wir uns wie in so einer Badewanne äh oder eben in diesem Trampolinglauben zwar immer geradeaus zu bewegen, aber bewegen uns quasi auf einer Kreisbahn geradeaus. Und das ist sozusagen der Ort, in dem sich alles abspielt,Heißt aber auch, dass wenn jetzt wenn man bei dem Beispiel bleiben ähm die Sonne ist jetzt weg,Ja, nicht nur, dass das für uns erst nach acht Minuten sichtbar wäre, weil eben das Licht so lange braucht, um zu uns zu kommen, heißt das, dass dann auch,Dieser Krümmungseffekt 8 Minuten braucht, bis er bei uns ist.
Lavinia Heisenberg
Genau, also das heißt, eigentlich ähm müsste man dann äh anfangen zu sehen, nach acht Minuten, dass dass die diese diese die drei also diese Laufbahn von der Erde sich anfängt zu ändern.
Tim Pritlove
Schlagartig dann oder wie muss man sich das vorstellen? Ich meine, wenn die Sonne nehmen wir an, sondern es ist einfach mal weg, so wie aufm Bildschirm einfach weggeklickt, jetzt gibt's irgendwie keine Sonne mehr.Würden wir erst mal acht Minuten lang weiterhin auf unserer Umlaufbahn um diese Sonne weiter ziehen, weil,Wir können das ja noch gar nicht mitbekommen haben, weil nichts kann schneller sein als das Licht, also kann auch diese Krümmung sich nicht schneller fortbewegen als das Licht.
Lavinia Heisenberg
Genau, also nach acht Minuten müssten wir dann von unserer äh von diesem Kreis abweichen und auf anfangen, gerade uns zu bewegen. Klar, da sind noch andere Planeten um uns herum, aber wenn wir wenn wir jetzt vorstellen, dass da nur die Sonne und die Erde wäre.
Tim Pritlove
Würden im Prinzip alle ab dem Punkt, wo sie gerade sind, dann einfach wirklich geradeaus weiter schießen. Weil einfach ist ja nichts mehr da, worum man sich.
Lavinia Heisenberg
Mehr da, genau.
Tim Pritlove
Wie kann man sich das jetzt vorstellen? Also was wirkt denn dann da auf den Raum?
Lavinia Heisenberg
Das ist das ist sehr philosophisch. Ich kann das nicht beantworten. Das wie gesagt, das ist eine.
Tim Pritlove
So weit gereist.
Lavinia Heisenberg
Also äh ich es man soll das nicht so verstehen, als wäre da sowas wie ein Eter, so ein Ethamidum, das um uns herum gibt.
Tim Pritlove
Trotzdem muss er da was wirken. Also irgendeine Wirkung gibt es ja, aber sonst würde sich ja der Raum nicht krummen. Und der krümmt sich.
Lavinia Heisenberg
Die Wirkung ist ja die Wirkung ist ja äh durch die Krümmung, aber so wie ich ihre Frage verstanden habe, ähm wollen sie die krümmung irgendwie,besser vorstellen oder wenn sie jetzt auf einmal nicht da ist, warum spürst du sie nicht mehr?
Tim Pritlove
Ich akzeptiere, dass die Krümmung jetzt da ist, aber ich würde jetzt gerne wissen, warum krümmt es sich? Wodurch krümt es sich? Und wir wissen, okay, es ist die Masse, die Masse, okay, so.
Lavinia Heisenberg
Masse und Energie, genau. Das ist ähm.
Tim Pritlove
Laut Einstein das Gleiche.
Lavinia Heisenberg
Also Masse krümt dann die, diesen Raum Zeit und wenn wenn man diese Masse wegnimmt, dann ja, dann nimmt man noch die Krümmung weg.
Tim Pritlove
Aber warum krümmt denn die Masse den Raum? Also es könnte dem Raum ja eigentlich auch völlig egal sein.
Lavinia Heisenberg
Das ist die die oder? Das ist die die Behauptung. Das ist eine Annahme.
Tim Pritlove
Okay, ist eine Annahme und man kann sie man weiß, man weiß, dass es stimmt, man weiß, dass es so ist, weil wir es einfach die ganze Zeit nachrechnen können, alle.
Lavinia Heisenberg
Da wäre ich sogar vorsichtig, also ich ich würde jetzt nicht behaupten, man weiß, dass es so ist und dass es so stimmt,Wie gesagt, es ist eine mathematische Beschreibung, die uns hilft, diese Phänomene zu beschreiben, aber man kann auch andere mathematische Beschreibungen finden, die genauso diese Phänomene beschreiben würden, aber wo vielleicht,das Raum Zeitkontinenum nicht unbedingt gekrönt ist.
Tim Pritlove
Okay, jetzt nochmal zurück zu dieser äh Fragestellung,Die Sonne ist jetzt einfach da. Die Sonne hat viel Masse, heißt viele Atome, viel Protonen, Neuronen, paar Elektronen, andere Sachen vielleicht auch noch. Alles sehr dicht beisammen.Immerhin ist ein großer Feuerball, da ist richtig was los und äh,Die Sonne kämpft ja im Prinzip die ganze Zeit mit sich selber, nicht wahr? Sie stürzt die ganze Zeit in sich zusammen und explodiert immer so ein bisschen und drückt sich wieder nach außen, deswegen leuchtet sie und ist halt einfach äh da.Der Raum, okay, wir haben jetzt,Äther. Also nichts kein kein unsichtbares Gewebe, in dem sich irgendwas was irgendwie ein Trägermedium ist. Das war ja auch so eine alte Idee. Trotzdem irgendwas ist ja da,Weil wenn diese Masse dadrauf wirkt.Na ja, da muss ja auch irgendwas da sein, was was wirkt. Also ich versuche zu verstehen, was eigentlich den Raum als solchen ausmacht, wenn ich all die Materie wegnehme, was was bleibt über.
Lavinia Heisenberg
Dann bleibt einfach ähm ein leerer Raum. Also das ist dann diese dieser flache Raum, den wir uns ja am Anfang vorgestellt haben. Ist komplett flach,Man hat äh überall Quadrate, diesen schönen Quadratisch. Hat man hingemalt und ähm.
Tim Pritlove
Gut, aber das sind ja keine Quadrate, sondern.
Lavinia Heisenberg
Nix verzerrt, dass es dann komplett, genau.Dieser flache Raum. Ich weiß schon, in welche Richtung ihre Bemühungen gehen, aber äh das wird nicht einfach sein, weil das wirklich äh,eine abstrakte mathematische Idee ist und man darf das nicht so wortwörtlich nehmen, weil ähm wie wie wir es auch gezeigt haben. Man kann auch die allgemeine Relativitätstheorie,immer noch mit geometrischen Eigenschaften des Raum, Zeitkontinums beschreiben, aber das muss nicht unbedingt mit der Krümmung sein,Also ähm wenn man differentialgeometrimmt und sagen wir mal ähm sich anschaut, welche andere Eigenschaften können können noch die Raumzeit-Kontier haben,Krümmung, das ist aber auch die Tusion und auch die nichtmetrik. Das sind also drei unterschiedliche Eigenschaften, mathematische Eigenschaften, die einen Raumzeit haben kann,Wir haben auch gezeigt, dass man die allgemeine Relativitätstheorie nicht nur mit Hilfe der Krümmung beschreiben kann, sondern zum Beispiel mithilfe dieser nichtmetrik beschreiben kann,Und da hat man dann nicht mehr diese Interpretation, dass das Raumzeit gekrümmt wäre und dass man deswegen die Schwerkraft äh spürt. Es gibt auch andere Interpretationen, wo man dann sagt, das hat nix mit der krümmung,Raum Zeit zu tun, sondern dass es ein Teilchen. Das Eis äh die Erde.Die Schwerkraft ist ein Teilchen. Da gibt's sowas wie wie bei den beim Licht ist ja die Photonen, die die äh wechselwirken sozusagen kommunizieren,Manche sagen, bei der Schwerkraft ist genauso, da gibt's auch sowas wie ein Teilchen, also sowas wie ein Graviton und ähm,und da da würde man dann diese ganzen geometrischen Beschreibungen nicht mal anwenden, also sich komplett davon entfernen.
Tim Pritlove
Manche sagen das, okay, gut, aber das ist ja ähm auch jetzt erstmal, das sind jetzt auch sozusagen Thesen, die alle versuchen nochmal ein anderes Erklärungsmodell für die.
Lavinia Heisenberg
Das sind mathematische Beschreibungen derselben, derselben sozusagen physikalischen Phänomene.
Tim Pritlove
Okay. Widmen wir uns mal der Gravitation nochmal, um einfach versuchen zum Gefühl dafür zu bekommen, was da eigentlich wirken kann. Also die Masse,kommt in Raum.Ist zumindest jetzt die Art und Weise, wie Einstein es beschrieben hat, mag andere Sichtweisen darauf geben, wo man vielleicht zum selben Ergebnis äh kommt. Aber das ist ja zumindest etwas,funktioniert, was wir,nachvollziehen können, was wir irgendwie berechnen können. Wir schicken irgendwelche Satelliten irgendwo hin, die fliegen durch die Gegend und dadurch, dass wir einfach diese Masse, die sich irgendwo bewegt zueinander in Beziehung setzen, eben auf Basisäh Gleichung und Beschreibung kommen wir ja irgendwie an, ne? Wir haben Kometen besucht, et cetera, es funktioniert. Wir wissen, dass es irgendwie,einer richtigen Lösung äh findet. Trotzdem scheint es nach wie vor ein totales Mysterium zu sein, was.Eigentlich diese äh Schwerkraft letzten Endes ausmacht, was was wirklich der der tatsächliche physikalische Effekt ist, den die Masse auf diesen Raum hat.
Lavinia Heisenberg
Ja, also tiefgründig verstehen wir nicht, was die Schwerkraft ist. Zumindest verstehen wir sie nicht, wie wir sie, wie wir das mit den anderen äh ähm Kräften sozusagen in der Natur zu verstehen denken.
Tim Pritlove
Mhm. Ist das nicht total frustrierend?
Lavinia Heisenberg
Ja, frustrierend, aber auch spannend. Also gleichzeitig.Also man kann sozusagen Modelle aufstellen, um gewisse Phänomene auf gewissen Energieskalen zu beschreiben.Wenn man damit zufrieden ist, dann kann man dann einfach das weitermachen. Aber wenn man dann grundlegend fundamental verstehen will,woher das kommt und warum das so ist. Ähm da kommen dann halt diese ganzen Fragestellungen, die wir nicht beantworten können,wir noch nicht wirklich sagen können, rassistisch Schwerkraft. Ist das nun ein Teilchen? Ist es nun die Krümmung? Das Raum-Zeit-Kontinuums, also was ist das?
Tim Pritlove
Was denkst du denn, was das ist? Keine Ahnung.
Lavinia Heisenberg
Keine Ahnung. Also durch meine äh natürlich durch meinen Werdegang, auch durch meine Doktorarbeit ähm komme ich schon eher so äh von der Teilchenphysik Perspektive.Wo ich dann halt die Schwerkraft als als Teilchen beschreiben würde.Aber meine letzten Arbeiten waren auch sehr, sehr geometrisch, wo ich halt die Schwerkraft auch äh geometrisch beschrieben habe. Ähm das heißt also.
Tim Pritlove
Du sparst dir die Meinung eigentlich komplett aus. Du versuchst dich dem Thema auf eine Art und Weise zu nähern, indem alles eigentlich möglich ist.
Lavinia Heisenberg
Ja, im Grunde ist alles ist alles möglich und man kann vielleicht sogar wagen über die Einsteinche Relativitätstheorie bisschen hinauszugehen, indem man vielleicht eine Theorie aufstellt, die sogar bisschen verallgemeinert ist.
Tim Pritlove
Sagen, dass das jetzt so das Mysterium ist, die Schwerkraft.
Lavinia Heisenberg
Ja, ich denke schon, in der ähm in der modernen Physik äh ist die Schwerkraft schon ja das ja, das muss man knacken. Da gibt's Nobel.
Tim Pritlove
Das muss man knacken. Da gibt's nur Weltpreise für.
Lavinia Heisenberg
Also eine eine sehr wichtige Frage ist halt, wie man sich Fwerkraft äh mit mit der Quantenmechanik halt in Verbindung bringt. Das heißt, wenn man auf sehr sehr sehr kleinen,ähm Skalen gehen würde, super dumme Meere, noch kleinere, dann äh weiß man halt nicht,wie man die einsteinche Theorie halt mit der Quantenmechanik in Verbindung bringen soll, aber auch wenn man auf sehr großen Skalen geht und versucht die die Bewegungen von Galaxien und Galaxienhaufen zu beschreiben.Dann sieht man auch komische irgendwie Energie oder Materieformen, die man annehmen muss und das ist dann alles schon ziemlich rätselhaft.
Tim Pritlove
Mhm. Das sind jetzt im Prinzip ja die zwei Orte, wo quasi die einsteinische Welt so ein bisschen an ihrer,Grenzen zu kommen scheint. Hatten wir erst mal Newtonalles wunderbar funktioniert hat, aber in dem Moment, wo wir irgendwie den Planeten verlassen haben und größere Geschwindigkeiten und größereRäume äh betrachtet habenlief so langsam auseinander und äh man fragte sich, ob man nicht äh vielleicht noch irgendwelche kleinen Formelteilchen hinten ranhängen muss, damit's irgendwie passt. Dann kam irgendwie Einstein,hat das im Prinzip aber getan, aber hat halt in dem Zuge auch noch eine komplett andere These,geworfen, wie denn nun das eigentlich funktioniert und seine Idee der Raumzeit und der Krümmung des Raums konnte anhandzahlreicher Experimente und Feststellung einfach auch belegt werden, dass auch seine Beschreibung passt. Nun,aber eben vorne und hinten weitere Gedankenräume und physikalische Bereiche,aus der Beobachtung jetzt schon klar ist,Auch da funktioniert's nicht. Vielleicht kannst du mal kurz sagen was sind die Bereiche im Kleinen und was sind die Bereiche im Großen, wo wo sozusagen das Einsteinsche äh an seine Grenzen kommt und anfängt, vor sich hinzu scheitern.
Lavinia Heisenberg
Man kann sich ähm zwei Sachen anschauen, man stelle sich vor, man schießt irgendwelche Teilchen aufeinander mit mit sehr, sehr, sehr hohen Energien.Halt aufeinander, so wie wir es bei LEC machen, aber wenn man das dann irgendwann auf so hohen Energieskaren machen würde, wo die Quanteneffekte der Schwerkraft selber sozusagen eine Rolle spielen würden. Da wissen wir nicht, wie die Theorie ähm,funktionieren würde. Also die ist dann äh könnte sich so was vorstellen wie dass sie überall die regiert oder dass sie überhaupt keine Vorhersagen machen kann, ja?Und auch wenn man zum Beispiel ähm die schwarzen Löcher beschreibt ähm oder oder das kosmologische den kosmologischen Ursprung, sowas wie Big Bang,irgendwann weiß man, wenn man das dann zu weit treibt, dann kommt man auf irgendwelche Singularitäten und äh Singularität heißt nix anderes als,Ich habe keine Ahnung, was da passiert, weil die Theorie ist nicht in der Lage,oder dessen Gleichungen ist nicht in der Lage mir die physikalischen Phänomene zu beschreiben. Es es tauchen überall irgendwelche Unendlichkeiten auf oder ja es ist es hat null Aussagekraft. Ähm.
Tim Pritlove
Mhm. Das heißt, die Formeln versagen.
Lavinia Heisenberg
Genau, die Formeln versagen und da kann man so, so ja, so weit pushen, wie man will, die Theorie will das nicht oder kann das einfach nicht. Und,Auf der anderen Seite, wenn man dann halt auf großen Skalen geht und zum Beispiel Abstände zu den Galaxien oder Galaxienhaufen bestimmt, dann sieht man, dass die Galaxien sich immer schneller und immer schneller von uns wegbewegen.Das Universum sich äh beschleunigt, expandiert,Das kann man mit Hilfe der normalen Materie, die wir jetzt um uns herum kennen, können wir das auch nicht verstehen und beschreiben und müssen wir dann halt annehmen, dass so was wie eine dunkle Energie im Universum vorhanden sein muss,die diese beschleunigte Expansion hervorruft.Der anderen Seite, wenn man wiederum zum früheren Universum geht und denkt, aus diesem äh Big Bang Model ist irgendwie diese ganze Struktur entstanden, die wir jetzt beobachten.Ähm und das sind halt damals sehr, sehr kleine ähm,kleine Störfaktoren gewesen, also Störungen gewesen, Fluktuationen,aus denen ist es unmöglich, mit unserer Standardtheorie zu erklären, wie diese ganze Struktur entstanden ist,damit wir sie erklären können, müssen wir auch eine dunkle Materie hinzunehmen.
Tim Pritlove
Wobei dunkle Energie und dunkle heißt sie, heißt sie, dass das äh etwas ist, von dem man weiß, dass es schwarz ist. So im Dunkel heißt einfach, wir wir haben keine Ahnung.
Lavinia Heisenberg
Absolut kein.
Tim Pritlove
Es muss sich sozusagen dunkle Energie ist halt,im Sinne von da ist eine, ich kann man sagen Kraft, also etwas, was sozusagen eine eine Kraft auswirkt auf die Materie, von der wir keine Ahnung haben,was sie ist, woher sie kommt, wie sie sich manifestiert. Man weiß einfach überhaupt nix. Man weiß nur es müsste so etwas geben,damit das, was wir sehen und messen können, auch Sinn macht äh im Kontext dessen, was wir derzeit wissen, wir alles zusammenhängt. Also das Universum wird auseinander geschleudert von etwas, erhält eine Beschleunigung.Aber wir wissen nicht, was der Ursprung ist und nichts im einsteinschen äh Universum gibt uns irgendeinen Anhaltspunkt,was die Quelle dessen sein könnte oder wodurch sich das in irgendeiner Form manifestiert, so dass halt wir feststellen so A das ganze Universum fliegt auseinander,am Ende wird ja auch dadurch irgendwie alles auch nochmal aus also diese ganze,des Universums ist ja nochmal eine zusätzliche Verzerrung des Raums. Mal ganz unabhängig von dieser Krümmung durch die Gravitation, also es ist sozusagen.
Lavinia Heisenberg
Es ist ja eine Energieform, also es Masse ist ja gleich Energie, also die Energie, die krümmt dann auch äh dieses Raum Zeitkonte, genau, zusätzlich.
Tim Pritlove
Sozusagen. Also einerseits die Masse, die da ist, krümmt.Und dann ist irgendeine Masse da oder eine Energie, wie auch immer die krümmt auch oder zerrt das alles auseinander konkret äh aber wir wissen nicht, was es ist.
Lavinia Heisenberg
Genau, wir wissen nicht, was das ist und ähm wir haben ähm wenn man innerhalb der allgemeinen Relativitätstheorie,bleiben würde, dann kann man einfach so 'ne konstante zu der Theorie dazu addieren. Die Theorie erlaubt das,Das ist die Habelkonstantin, die kosmologische Konstante im Grunde. Ähm mit der kann man versuchen, diese beschleunigte Expansion zu beschreiben.Weil sie schon äh wenn man halt so eine Konstante in seiner Theorie äh hinschreibt äh im Grunde gibt es dann am Ende irgend so eine Energieform, die einen negativen Druck hat,und das ist auch etwas, was wir halt nicht kennen, irgendeinem Materieformen irgendwie, die negativen Druck hätte und ähm,Aber damit könnten wir dann die beschleunigte Expansion beschreiben. Das Problem ist jetzt, wenn man dann verschiedene kosmologische Beobachtungen miteinander vergleicht, ähm die diesen Parameter halt messen, diese Habelkonstante zum Beispieldann gibt es Widersprüche. Also es sind diese von denen,von denen die Leute reden. Also die Beobachtungen scheinen nicht auch äh zu übereinstimmen,und ähm auf der einen Seite ist es halt schön, weil das halt einfaches Modell ist. Das ist das Standardmodell und ist relativ einfach,aber es erklärt's nicht auf einer fundamentalen Ebene, es erklärt's nur Phänomenologisch sozusagen.Aber selbst auf der phänomenologischen Ebene scheint sie doch irgendwie zu scheitern, weil halt verschiedene Beobachtungen verschiedene Werte liefern.
Tim Pritlove
Also mit allen Worten, wir haben eigentlich keine Ahnung.
Lavinia Heisenberg
Ja, das kann man unterstreichen.
Tim Pritlove
Mhm. Oh wow.Okay, das sind also sozusagen unsere äh unsere Mysteriensammlung, ist ja auch eigentlich mal ganz gut, dass ein bisschen äh quantifizieren zu können so. Wir haben keine konkrete Vorstellung davon.Wie Gravitation wirklich sich durch diesen Raum durchfrisst. Warum,Masse oder Energie den Raum krümmt. Wir wissen nur, sie tut es. Das können wir nachvollziehen, das können wir berechnen, können wir irgendwie,fliegen lassen und so weiter und GPS funktioniert und all diese ganzen Effekte können wir ausreichend berechnen, sodass die Dinge funktionieren, die wir derzeit so zum Funktionieren gebracht haben.Nur erklären tut es das halt äh noch nicht. Wir haben keine wirkliche Vorstellung davon, was das bedeutet, dass der Raum sich krümmt. Wir wissen nur er krümmt sich, aber wir wissen nicht, wodurch,Wirklich letzten Endes, also was fundamental der Vorgang ist, der sich dortabspielt, um diesen Effekt zu erzielen. Genauso wenig wissen wir es mit dem Herausschleudern der Expansion des gesamten Universums, die ja auch nicht nur,da ist, sondern sich ja auch immer weiter,beschleunigt, also wird ja auch immer schneller sozusagen, also das Ganze uns wird ja eigentlich das Universum gerade entzogen. Ne, also es ist ja irgendwann sehen wir ja gar nichts mehr, weil die Dinge so weit weg sind,Das ist Licht, sich eigentlich von uns schneller, also es wird von von uns wegexpandiert, schneller, als es zu uns zurückkehren kann.Also wir haben so eine Art Unbeobachtbaren Raum, von dem wissen wir ja ohnehin schon, dass er da ist. Es gibt Objekte, die sind einfach,schneller unterwegs, also schnell entfernen sich, schneller von uns als sich Licht uns annähern kann und das wird aber immer noch schlimmer, das heißt Dinge, die wir jetzt vielleicht noch sehen können, von denen wissen wir jetzt schon, dass wir sie irgendwann nicht mehr sehen können.Eine furchtbare Vorstellung oder? Also es ist ja totale Katastrophe.Und dann mit der dunklen Materie wiederum wissen wir auch bei Sachen, die wir beobachten können,die ganze Einscheinsche äh Formelsammlung auch nicht ausreicht, um zu beschreiben, was wir konkret sehen können. Das Beispiel war die Bewegung von,Galaxien, die irgendwie, wenn man halt mit unserem Formelwerk äh rangeht und sagt, okay, wir sehen so und so viel Materie, weil so und so viel Licht und,zumindest eine Vorstellung oder meine Vorstellung davon zu haben, was da eigentlich an Materie drin ist, das.Aber nicht so drehen könnte, wie wir's beobachten, also passt das irgendwie auch nicht. Also wir wissen eigentlich gar nix.
Lavinia Heisenberg
Ja also ähm wie gesagt, wenn man dann halt ähm auf größeren und größeren Entfernungen geht, wenn man wenn wir versuchen unseren Horizont bisschen zu erweitern, dann,halt diese ganzen rätselhaften Fragen auch dazu.
Tim Pritlove
Jetzt würde mich mal interessieren, jetzt gibt's ja verschiedenste Kandidaten und Vorschläge und Ideen ähm,was, wie man das jetzt sozusagen vereinigen könnte oder wie man Erklärungen finden könnte,String-Theorie, keine Ahnung, was müsste man jetzt hier alles aufzählen? Was sind das für Gedankenexperimente, was,deiner Meinung nach da auch äh genug Fleisch, um vielleicht noch mal was äh zu werden? Wie wie wie denkst du über dieses Problem nach und vor allemuns vielleicht mal so ein bisschen mitnehmen, wie man auch darüber nachdenkt, also was hätte da überhaupt gar keinen Ansatz nachzuvollziehen,wie man da versucht eine Lösung zu finden.
Lavinia Heisenberg
Ja, also ich denke ähm ein eine gute ja.Vorangehensweise wäre zum Beispiel halt die ganzen Annahmen nochmal durchzugehen die die allgemeine Relativitätstheorie ausmachen, also die,grundlegenden Eigenschaften sozusagen? Was sind die die ganzen Annahmen?Versuchen, diese Annahmen, Stück für Stück so bisschen zu lockern oder zu aufzugeben und dann zu studieren, was hat das dann für Konsequenzen?Also so was zum Beispiel könnte man machen. Ähm das hat auch den Vorteil, dass man eigentlich die allgemeine Relativitätstheorie,immer besser und immer besser zu zu verstehen scheint oder oder dass man dann halt auch.Sie vielleicht äh mehr und mehr wertschätzt, weil die Dinge sich dann sehr schnell für komplizieren.Eine Idee in der Kosmologie zumindest ist es ähm zu sagen, okay ähm anstatt anzunehmen, dass da so was wie eine dunkle Materie oder dunkle Energie vorhanden ist. Vielleicht muss man die Theorie selber, also die Formeln selber,halt erweitern und ändern, sodass man am Ende halt diese zusätzliche Energie- und Materieformen nicht mehr haben müsste.Um die Beobachtungen beschreiben zu können. Ähm das sind dann die verallgemeinerungen der allgemeinen Relativitätstheorie.Man kann das ähm man kann das machen, indem man ähm zum Beispiel zusätzliche,Felder in die Theorie hineinführt, also zusätzliche äh,In der Taschensprache würde das sagen äh zusätzliche Teilchen sozusagen, die die Schwerkraft beschreiben würde.Man könnte aber auch innerhalb der Geometrie halt ähm von unterschiedlichen geometrischen Eigenschaften starten und versuchen, diese zu verallgemeinern.Und ich denke mal, man müsste dann halt systematisch vorgehen und und versuchen, ganz verschiedene, viele ähm,Richtungen halt auszuprobieren und zu gucken, dann stimmen diese dann mit den Beobachtungen besser überein? Oder werden sie sofort ähm,sofort aus dem Spiel. Genau, das ist zum Beispiel ein Teil unserer unserer Forschung in der Gruppe,wo wir genau diese Fragen uns stellen und Theorien aufstellen und diese dann halt auch mit den Beobachtungen vergleichen.
Tim Pritlove
Was ist da so bisher rausgekommen? Ich meine, ihr seid ja nicht die einzigen, die daran arbeiten und es gibt ja.
Lavinia Heisenberg
Genau, ganz viele.
Tim Pritlove
Genannt. Es gibt ja, gibt ja schon so verschiedene Ansätze. Hat da irgendwas schon mal für besondere Aufmerksamkeit gesorgt und ist irgendwas schon widerlegt? Was was sind so diese Ansätze, die es da bisher gegeben hat, das alles zu.
Lavinia Heisenberg
Ja, so es gab schon äh ein paar Theorien, die für eine gewisse Zeit bisschen Unruhe hervorgerufen haben, beziehungsweise wo wo halt mehrere Gruppen gleichzeitig da dran gearbeitet haben und man merkt es dann meistens halt, dass die,die Zitierungen halt äh äh ziemlich hoch gehen. Ähm ähm eine Sache war, ähm wenn man annehmt, dass dass das Graviton Teilchen,nicht masselos wäre, sondern wenn es Masse hätte, das wäre dann halt die massive Schwerkraft,Das war ein Thema, was was meine Doktormutter sozusagen äh woran sie gearbeitet hat und wodurch ich durch sie so ein bisschen äh beeinflusst beeinflusst worden bin.Ich selber habe ähm angenommen, dass da ähm ein ein Teilchen äh vorhanden wäre, was sich so ähnlich verhält wie ein Foto.Es hat sehr, sehr ähnliche Eigenschaften wie wie ein Foto. Das ist ein Vektorfeld, nennt man das,in unserem äh in unserer Community und und dadurch kann man auch ähm sehr einfach ähm diese beschleunigte Expansionen äh hervorrufen.Ähm dann genau ähm,momentan äh gibt's auch diese diese Theorie ähm an der wir auch arbeiten, dass man dann sagt ähm die Schwerkraft nicht ist nicht an,wegen der Krümmung des Raumzeitkontinums, sondern ist die nichtmetrige Eigenschaft.Des Raumzeitkontinums und mit dieser nichtmetrik Eigenschaft kann man auch versuchen, die Beobachtungen zu beschreiben.
Tim Pritlove
Was heißt nicht Metrigeigenschaft?
Lavinia Heisenberg
Ja, das für mich dann schon schwierig, das für für eine Laie zu beschreiben.Weil es leider nicht diese Hilfsmittel gibt ähm mit der Krümmung von diesem Trampolin, oder?Eigentlich auch falsch ist, ist ja nicht bar, wirklich wahrhaftig so. Ähm aber zum Beispiel, wenn man so was wie nichtmetrik ähm,in der Raum Zeit hätte, dann würden sich die Längen äh Wahrnehmungen sich ändern, also die die Längen des der der Vektorfelder würden sich ähm anpassen oder ändern.
Tim Pritlove
Also man hat sozusagen kein einheitliches Koordinatensystem innerhalb dieser Betrachtungsgröße.
Lavinia Heisenberg
Man kann schon Konnatensystem äh auch einbauen, aber ähm,Genau, man kann sozusagen ähm also in der in der allgemeinen Relativitätstheorie ähm gibt es, ähm wenn man zum Beispiel einen einen ein Objekt hat, das irgendwie eine gewisse Länge hat,Wenn man das jetzt einfach auf einer geraden Linie äh in diesem Gravitationsfeld äh hätte und ohne dass da irgendwelche Verzerrungen,stattfinden, dann würde sich diese Länge gar nicht ändern.Das wäre zum Beispiel in äh in einer Geometrie, wo man diese nichtmetrike Eigenschaft äh hätte, wäre das dann anders. Die Länge dieses Objekts würde sich dann ändern.Aber es ist schwer ähm es ist schwer, dass irgendwie ähm verbildlichen, weil das halt mathematische,Beschreibungen sind. Genauso wie die also das ist auch irgendwie eine Verdrehung äh der Raumzeit.Und wie soll man sich jetzt eine Fettdrehung der Raumzeit vorstellen? Es ist halt.
Tim Pritlove
Also ich meine, wenn wenn ihr in der Lage seid, euch das vorzustellen, dann ist ja schon mal eine ganze Menge äh geholfen, aber das reicht mir eigentlich auch. Ich will wollte ja nur verstehen, wie so die Ansätze sind. Also man geht wirklich mathematisch.Die Sache äh heran. So und das vielleicht auch erstmal gar nicht mit einer klaren,Visionen, was so die Lösung sein kann, sondern man probiert herum und schaut, ob man überhaupt einen mathematischen Ansatz findet, sodass,alles was bisher funktioniert, auch noch mit dieser Methode funktioniert. Und danach macht man sich vielleicht erst einen Reim drauf, warum denn das jetzt passen könnte. Also ist ein bisschen wie so ein Puzzle lösen, wo man nicht genau weiß, wo man das Puzzlesteinchen jetzthintot, sagen wir mal, probiert so ein bisschen aus irgendwie ah hier die Form, nee da ist vielleicht dann doch irgendwie an einer anderen äh Stelle, damit sich letzten Endes ein Gesamtbild daraus äh ergibtAber was ist so mit,wie das Trink Theorie et cetera, was was ist das für ein Beitrag, um um dieses diese Vereinheitlichung der Systeme herbeizuführen?
Lavinia Heisenberg
Ja, also String-Theorie, wie gesagt, ist auch so eine eine mathematische Beschreibung, ähm wie man versuchen könnte, die Schwerkraft, mit ähm der Quantenmechanik halt in Verbindung zu bringen. Also das wäre so was wie ein Kandidat für Quantengravity.Das einzige Problem ist dort ähm es findet halt auf so hohen Energien statt.Oder basiert sich diese Theorie auf Skalen, dass man das.Vorhersagen nicht direkt verifizieren oder kann mit Experimenten, die wir zum Beispiel halt hier machen, also zum Beispiel mit den Beschleunigeranlagen am am Zähnen, das können wir nie erreichen.Um um solche Energieskalen zu erreichen, wo man dann Stringy-Effekte für anfangen würde zu beobachten.Aber ich bin da jetzt nicht so pessimistisch und ich bin der Meinung, dass da die Kosmologie vielleicht bisschen zu Hilfe kommt, weil die Kosmologie ist ja,nicht nur was uns um uns herum jetzt hier passiert, sondern die komplette Entstehung und Entwicklung.Seit dem Ursprung sozusagen und wenn man sehr sehr zurück also wenn man annimmt dass,ähm dass da halt diese Expansion des Universum stattfindet, was wir hier beobachten und wenn man dann jetzt zurückgeht.Müsste es ja früher ähm komprimiert sein, also viel kleiner gewesen sein und und je früher man geht, umso heißer müsste es dann gewesen sein und das ist ja diese Hot Big Bang.Irgendwann war es alles so energetisch, dass man dann wiederum halt eine indirekte Art und Weise.Hoch Energiephysikphänomene zu zu beobachten,Das würde man dann halt anhand von kosmologischen Beobachtungen über sehr, sehr lange Zeit sich angesammelten ähm indirekten Effekte halt versuchen zu zu beobachten.Beispiel wenn man annimmt, dass diese beschleunigte Expansion durch die kosmologische Konstante irgendwie entsteht, was man ja zu der einsteinste Theorie dazunehmen kann, ist es sehr, sehr schwierig von der String-Theorie, eine kosmologische Konstante herzu,kriegen, herzubasten.Und äh wenn wir sage ich mal irgendwann mit unseren äh Beobachtungen so genau sein können, dass wir die kosmologische Konstante entweder bestätigen oder ausschließen können,Dann wäre das ein bisschen so was wie eine indirekte Untersuchung des Trinktheorie selber,sozusagen wozu ist diese Quanten-Theorie in der Lage um meine kosmologische Beobachtungen,zu beschreiben oder ob sie dann überhaupt vielleicht sogar in in Widerspruch ist zu den kosmologischen Beobachtungen.
Tim Pritlove
Wie unabhängig es jetzt diese theoretische Forschung, dieses dieses mathematische und teilweise sicherlich auch,philosophische Suchen nach einer Lösung. Das so würde ich's ja mal beschreiben. Inwiefern ist das abhängig von weiteren,Experimentellen Erkenntnissen. Ich denke jetzt natürlich vor allem an das Jabs Web Teleskop, was äh,in den letzten Monaten ja sehr erfolgreich gestartet äh entfaltet und äh zu diesem Zeitpunkt. Wir nehmen jetzt äh hier auf im äh Mitte April zwanzig zweiundzwanzig. Äh wir wissenalles funktioniert sehr gut. Also äh ähm am Maximum dessen, was man hätte erwartenkönnen, also es kündigt sich an, dass wir im Prinzip diesen die alte Zeit des Universums, also das sehr weite Schauen in das Universum, dass das jetzt demnächst,interessante Ergebnisse liefern könnte. Erwartest du dir da neues Futter, auch für diese theoretische Suche nach Lösung oder ist es davon weitgehend entkoppelt.
Lavinia Heisenberg
Also auf jeden Fall werden wir äh,mehrere neue Satelliten haben, neue Daten, die zur Verfügung stehen werden. Und ein Problem wird sein, dass da so viel zu ein sehr komplexer Datensatz vorhanden sein wird und auch noch so groß, dass man vielleicht.Als Mensch nicht in der Lage sein wird diese Datenmenge zu bewerten und ähm ich kann mir gut vorstellen, dass so was wie alte Fischschule Intelligence halt immer mehr und immer mehr eine Rolle spielen wird,einfach diese Daten auszuwerten und gewisse physikalische halt ähm Eigenschaften aus den Daten herauszufiltern.Ähm ein anderes Problem ist halt, dass ähm dass es jetzt nicht so wie damals so einsteiniger Zeit wo die Theorie und die Experimente schon so ein bisschen Hand in Hand äh gingen.Vielleicht waren sogar die Theorien den Beobachtungen ein bisschen voraus und momentan ist eher so das Gegenteil.Die Experimente sind äh sind ziemlich voraus und aber wir haben das theoretische Verständnis noch nicht so ganz entwickelt.Genau und da werden dann wahrscheinlich schon wieder sehr, sehr ähm ja,Ansätze gebraucht, die wahrscheinlich sehr radikal sind, wo man auch halt stark pushen muss, dass sowohl Theorie als auch Experimente bisschen bisschen enger,zusammengehen und das ist auch eine der Gründe, warum wir halt in unserer Gruppe versuchen,Nicht nur theoretisch unterwegs zu sein, sondern auch halt die Beobachtungen ähm in Betracht zu zählen.
Tim Pritlove
Was brauchst du denn jetzt für den großen Durchbruch? Äh brauchen wir eher noch mal so ein Wunderkind, was irgendwie zehn Jahre äh im Café sitzt und dann äh ich weiß, diesen Heureka im Moment hat's nicht gegeben, aber sozusagen äh da äh,jemand dadurch hervorstechen wird,einfach ganz anders über etwas nachgedacht zu haben oder ist die Wissenschaft die theoretische Physik mittlerweile auch mehr so als so ein gesamter äh Organismus weltweit und trägt sich permanent neue Ideen zu?Greift man vieles auf oder versucht man mehr seinen eigenen Weg zuzugehen? Wie geht's dir da.
Lavinia Heisenberg
Ja, also ich glaube, momentan ist es schon so, dass man einen sehr, sehr spezialisiertes Wissen sich aneignet und,man forscht, umso mehr man in diese Richtung reinrutscht,Äh wie gesagt, damals 19zehn, neunzehnhundertfünf, was auch immer, da da wusste man auch nicht noch nicht so viel über die Physik und vielleicht konnte man mit zwei, drei Büchern.Schon fast das gesamte Wissen sich aneignen.Aber heutzutage jetzt selbst innerhalb der theoretischen Physik, selbst innerhalb der Schwerkraft gibt es so viele ähm subklassen sozusagen subspezialisierte Forschungsgebiete,wo man dann sehr viel Wissen innerhalb dieses spezialisierten Richtung halt äh herauskriegt,aber dann das Gesamtbild geht manchmal so bisschen verloren oder? Und das ist dann halt sehr schwierig,Ich glaube, früher konnten sie zum Beispiel sogar Physik und Chemie und alleszusammen machen und und die Theoretiker haben sogar Experimente gemacht, aber jetzt werden wir eher so immer mehr und mehr so bisschen fast wie Fachidioten. Wir wissen dann halt sehr, sehr viel über unser spezielles äh.Ähm ja unseren unseren Fachgebiet aber nicht so.
Tim Pritlove
Schwierig das Große und Ganze noch im Blick zu behalten,so viel Wissen über einen Spezialbereich erstmal ansammeln muss, um das überhaupt zu verstehen. Kann ich gut nachvollziehen. Ist es vielleicht eine denkbare,Zukunft, dass wir dann tatsächlich durch solche trainierten Algorithmen und solche Erkenntnisorientierten äh Algorithmen in irgendeiner Form nach der oder bestimmten Lösung forschen könnten, also es ist vorstellbarman quasi ein System programmiert, was dieses Wissen und diese Ideen in sich versucht aufzunehmen und.Zuwegen und nach Lösungen zu finden. Das klingt klingt sehr nach Science-Fiction.
Lavinia Heisenberg
Ja, also wahrscheinlich, es kann durchaus sein, dass man vielleicht eine wirklich wahren Durchbruch hat, nur wenn man dann,dieses sehr spezielle Wissen aus seinem sehr speziellen Fachgebiet mit einem anderen verbinden muss, was vielleicht sehr weit weg ist und wir einfach nicht die menschliche Kapazität dazu haben. Und wenn diese gelernte Algorithmen dazu in der Lage wären.Dann könnten Sie das vielleicht knacken oder? Also dass Sie das dann halt äh doch herauskriegen könnten. Aber ich weiß nicht, also ich bin da eher,optimistisch irgendwie unterwegs. Es kann auch sein, dass wir Stück für Stück gewisse Dinge halt ähm da herausfinden werden, wodurch wir dann ganz neue Wege ähm,finden werden und dass wir dann vielleicht jetzt ähm auf einmal vielleicht möglich wird, auf andere Galaxien zu reisen und und andere Formen von Beobachtungen zu machen und so weiter.
Tim Pritlove
Du bist zuversichtlich, dass eine Lösung noch gefunden wird.
Lavinia Heisenberg
Ich bin zuversichtlich zumindest, dass wir unsere Grenzen schon sehr, sehr, sehr, sehr stark ähm pushen werden,und dass wir zwar das jetzt so machen und fast so sich so anfühlt, als ob wir so in der Dunkelheit blind schwimmen,dass wir vielleicht gewollt oder ungewollt auf irgendwelche Sachen äh stoßen werden, was uns dann ganz großen Schritt nach vorne bringen wird.Mhm und das ist ja dann die Grundlagenforschung oder? Dass man dann äh halt klein nach vorne so kleine Schritte nach vorne macht, indem man halt viele Sachen vielleicht ausschließt,aber als Bonuspunkt andere Sachen entdeckt, die man vielleicht nicht mal geplant hat, ja.
Tim Pritlove
Ja das äh noch so nebenbei. Trotzdem ist es so ein bisschen man tastet im dunklen Raum und sucht nach dem Lichtschalter, aber es kann ja auch sein, dass man in morgen schon äh findet und dann äh wird alles klar.Ja schön. Das heißt, es geht voran. Vielleicht noch so zum Schluss noch mal so ein Gefühl dafür zu bekommen, weil es gibt ja immer so diese These,Hm ja seit Einstein ist ja eigentlich nix mehr passiert so.
Lavinia Heisenberg
Okay.
Tim Pritlove
Ich sehe schon, die teils dieser Auffassung äh nicht.
Lavinia Heisenberg
Die Stringtheoretiker sind wahrscheinlich der anderer Meinung.
Tim Pritlove
Okay, gut, aber jetzt nur mal so gefühlt ähm.Wie empfindest du die Beschleunigung im Erkenntnisgewinn, was jetzt so diese großen Theorien, das Gesamtverständnis von allem betrifft? Wie.Sind wir da? Hat sich da was verlangsamt odernimmt die Geschwindigkeit äh vielleicht die ganze Zeit zu, also verhält sich sozusagen unser Erkenntnisgewinn, gerade so wie die äh Universumsexpansion oder ähdrehen wir uns ein bisschen im im Kreis oder macht's zumindest derzeit den Eindruck, wenn man jetzt mal so von Dekade zu Dekade geht, ist der Erkenntnisgewinn konstant, ist ja irgendwie,kaum vorhanden, expandiert er. Was ist so deine Wahrnehmung, wie unser Weltwissen sich verändert.
Lavinia Heisenberg
Ja, also ich würde schon sagen, dass wir ähm dass wir schon sehr viel Wissen generieren. Ähm ich habe ja gesagt, immer immer spezielles Wissen.Auf der anderen Seite ist das System auch so aufgebaut, dass man nicht auf die Art und Weise forschen kann, wie man's vielleicht halt zu einsteiniger Zeit gemacht hat. Also ich glaube nicht, dass Einstein irgendwie.Diesen Druck hatte, oh, als Postdruck muss man dann halt äh sehr schnell Wissen generieren und und dies und jenes publizieren und.Und schnell vorankommen und und ich glaube, da müsste man vielleicht manchmal auch bisschen bremsen und manchmal vielleicht sogar einen Schritt zurückgehen.Und noch mal diese ganz fundamentalen Annahmen in Frage stellen und und eventuell vielleicht sogar wagen, diese aufzugeben oder komplett neue anzunehmen.
Tim Pritlove
Die Zwischenergebnisse der letzten Jahrzehnte sozusagen. Also so wenn man jetzt so was was für meinen verstanden zu haben,in den 20ern, in den 30ern, in den 40ern, so bis heute. Ist das irgendwie eine Kurve, die ansteigt? Äh wird.
Lavinia Heisenberg
Ja total, also es ist,Das ist fast wie eine ja eine exponentielle Beschleunigung und ähm ich würde sogar sagen selbst innerhalb der Schwerkraft jetzt ähm,die ganzen neuen Satelliten wie und auch andere ähm jetzt auch mit den Gravitationswellen ähm wir haben jetzt,so viel mehr neue Beobachtungsmöglichkeitenund äh und allein jetzt von diesem Leigovigo ähm Beobachtungen haben wir schon so viel Wissen generiert. Also ähm ich würde schon sagen, das ist wirklich so eine.Exponentielle Entwicklung des Wissens ist.
Tim Pritlove
Was jetzt die Beobachtung betrifft und was man aber die Theorie, die muss dem sozusagen jetzt noch hinterher laufen.
Lavinia Heisenberg
Die Theorie läuft momentan etwas hinterher, ja.
Tim Pritlove
Ihr seid dran.
Lavinia Heisenberg
Aber wir sind dran, ja. Und hoffentlich nicht sehr weit weg.
Tim Pritlove
Super, Lavinia, vielen, vielen Dank für die Ausführung,Ja? Unser Versuch hier mal ein bisschen aufzuräumen, was äh eigentlich die theoretische Physik äh gerade äh versucht alles zu verstehen und schon verstanden hat.Das war's. Die hundertste Folge von äh Raumzeit. Ähm vielen Dank davinia.Bald geht's wieder weiter.

Shownotes

RZ099 CHEOPS

Ein schielendes Auge nimmt Exoplaneten ins Visier

Weltraumteleskope versuchen alle möglichen Blickwinkel auf das All einzunehmen und spezialisieren sich dabei auf die unterschiedlichste Art und Weise. Das Projekt CHEOPS ist dabei eine einfache und reduzierte und damit auch vergleichsweise günstige Mission, die in Kooperation mit der ESA von der Schweiz aus geleitet und gelenkt wird.

CHEOPS konzentriert sich darauf, die Helligkeit von Sternen und Exoplaneten mit einer außerordentlichen Auflösung und Genauigkeit über längere Zeit zu messen und dabei auch die feinsten Änderungen aufzuzeichnen

Dauer:
Aufnahme:

Christopher Broeg
Christopher Broeg

Wir sprechen mit dem Project Manager von CHEOPS, Christopher Broeg vom Centre for Space and Habitability in Bern über die Entstehungsgeschichte der Mission, wie der kompakte Satellit entworfen und gebaut wurde, wie so eine kleine Mission ihren Launcher findet und wie das Instrument funktioniert und welche Ergebnisse es bereits geliefert hat.


Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Tim Pritlove
Hallo und herzlich willkommen zu Raumzeit, dem Podcast über Raumfahrt und andere kosmische Angelegenheiten. Mein Name ist Tim Pritlove und ich begrüße alle zur 99. Ausgabe von Raumzeit.Und heute bin ich mal wieder unterwegs gewesen und befinde mich in der Schweiz, genauer in Bern beim Center für Space Habity,und.Genau, also hier geht's,um das Weltall und wie man da drin wohnen kann, mal kurz gesagt. Genau und möchte heute über eine spezielle Mission sprechen mit dem schönen Namen und dazu begrüße ich meinen Gesprächspartner, nämlich Christopher Brück. Hallo.
Christopher Broeg
Ja, hallo, freut mich.
Tim Pritlove
Dieses Institut hier kümmert sich um was genau eigentlich im Wesentlichen?
Christopher Broeg
Ja, wir sind relativ neu und geht's einfach um Forschung, Excel und Planeten und Planetenforschung mit Fokus auf Bewohnbarkeit,aber eigentlich sind wir angegliedert hier an das Institut für exakte Wissenschaften und das physikalische Institut wo schon seit der Apollozeit und schon davor im Weltraummissionen begleitet und,ja Instrumente gebaut wurden für für alle möglichen Missionen. Also eine lange Geschichte und jetzt ein neues Institut mit vielleicht mehr Fokus auf,Neueste Erkenntnisse über Exoplaneten, die es ja noch nicht so lange gibt.
Tim Pritlove
Genau und darum soll's heute auch gehen. Konkret die Mission CEOPS eben, die sich auf Exoplaneten konzentriertich hatte auch schon mal einen Podcast hier in einem Nachbargebäude aufgenommen mit Kathrin Altweg über kosmische Chemie.Das war das Thema,Insofern freue ich mich hier noch ein zweites Mal vorbeikommen zu können. Ja, zu Beginn würde ich natürlich gerne mal wissen, wie sind sie eigentlich so zum Weltraum,gekommen, was was war denn da die Triebfeder?
Christopher Broeg
Ja, ist eine gute Frage, also.
Tim Pritlove
Kindheitstraum oder nichts Besseres eingefallen.
Christopher Broeg
Nein, vielleicht schon Kindheitstraum, also Weltall allgemein und,Physik eigentlich auch erstmal zunächst und dann wissen wollen, wie alles funktioniert, was die Welt im Innersten zusammenhält sozusagen. Im weitesten Sinne und dann war ich damals in München und am Studieren, Physik und,bin dann ans Max-Planck-Institut für extra terrestrische Physik gekommen und habe dort dann eben die Diplomarbeit gemacht und bin dann so in die Astronomierichtung gekommen.Mehr das einfach das persönliche Interesse und bisschen das Glück was eben gibt an an Projekten.Die man machen kann und das war noch nicht Weltraum, das war einfach beobachten der Astronomie und dann später Simulationen zur Planetenentstehung.Und dann bin ich in die Schweiz gekommen, weil ich ja auch eine sehr würde sagen weltweit eine der zwei, drei größten Gruppen weltweit sind, die sich eben mit der Erforschung der Entstehung von Planetensystemen beschäftigen,und die aber eben auch sehr viele Weltraummissionen machen und bin dann dann von da in die mit Kirbs eben in die in die Weltrauminstrumentation quasi abgedriftet.
Tim Pritlove
Mhm. Okay.Keops ist jetzt eine von mehreren Missionen, die ja gerade so in irgendeiner Form den Exoplaneten hinterherjagt. Das ist eine relativ kleine Mission.Was wie ist denn das wie ist denn dieses Projekt geboren worden und vielleicht welchen Mist ist das gewachsen und aus aus welcher Überlegung heraus?
Christopher Broeg
Ja also ganz genau, wie's entstanden ist, kann keiner mehr genau nachvollziehen, aber ich glaube, es war irgendwann mal ein Gespräch zwischen Professor Willi Benz und Didiakelo.Nicht 2tausend8 weiß nicht mehr genau wo sie überlegt haben was fehlt eigentlich noch im,Instrumentation und was gibt's irgendwelche Nischen, die man vielleicht mit einer kleinen Mission ausfüllen könnte,Damals war es ja so, dass Exo Planeten entdeckt wurden, hauptsächlich vom Boden mit Radialmessungen, also mit Spektrummetriemessungen und da bekommt man die Masse der Planeten, aber eben nur die Masse.Und Transit ist eben eine Methode, die man eben hauptsächlich vom Weltall machen kann und die damals schon erfolgreich, zum Beispiel die Coro-Mission gemacht hat oder später die Kepler-Mission.,dir aber nur den Radius gibt und die Idee ist immer braucht beides, damit man eben eine dichte Messung machen kann, was dann eigentlich überhaupt erst erlaubt, eine vernünftige Aussage,Planeten machen zu können und ja und Keops sollte eben diese Lücke füllen, Mate Kepler, das sehr viele Planeten entdeckt,aber eben meistens sehr weit entfernt ist, sehr dunkle Sterne, von denen man keine Spektren aufnehmen kann und keine Masse bestimmen kann und es gab ihm sehr wenig Überlappung zwischen,zwei grundsätzlichen Entdeckungsmethoden, so nenne ich's jetzt mal, und Keops sollte eben,was es jetzt auch macht, sein oder damals hieß es noch nicht Keops, aber eine Mission eben, die Follower machen kann im Weltall von anderen von von Exoplaneten, die man am Boden gefunden hat mit drei Jahre Geschwindigkeitsmethode zum Beispiel. Das war so die Grundidee.
Tim Pritlove
Mhm.Das heißt so, das was Kepler und ich glaube auch das Test die Testmission derzeit vor allem machen, dass sie einfach erst mal gucken, wo ist denn überhaupt was, sich bestimmte Sterne anschauen und dann erstmal schauenist da fällt da irgendwas auf, ne? Die Transit-Methode, wenn halt die Exo-Planeten um die Sonne herum kreisen und Verdunklungen machen oder halt dieseszittern, weil man halt sehen kann, ah der Stern, der ruckelt so hin und her, da muss wohl irgendwas drum herum fliegen.Waren dann sozusagen erstmal die Indikatoren, wo man gesagt hat, okay, da ist was, da schauen wir nochmal genauer hin, beobachten das über einen längeren Zeitraum und dann wissen wir so, aha, okay, nach unseren Berechnungen müssten da jetzt drei, vier, fünf, acht, wie viel auch immer, Planeten um diese Sonne herum kreisen, diesen Stern.Hat man die erstmal auf einer Liste, muss das irgendwann auch mal bestätigen durch Langzeitbeobachtung, aber man weiß halt nicht genug. Man muss eigentlich schärfer hinschauen,kann man das so zusammenfassen?
Christopher Broeg
Ja und nein, also einerseits ja in Bezug auf vor allem Radialgeschwindigkeiten, wo man eben eine Bestätigung braucht und auch vor allem einen Radius braucht. Bei Kepler ist eigentlich kann Keops jetzt nicht viel beitragen. Hat,guten Vorteil gehabt, hat Millionen von Sternen an angeschaut, also über hundert, mehrere hunderttausend mit sehr hoher Kadenz und ich glaube über eine Million im im Gesichtsverhältnis, über mehrere Jahre, dreieinhalb Jahre war, glaube ich, die erste Mission,und aber es kann natürlich dann per Definition, wie's Konstruiert ist nur einen kleinen Ausschnitt am Himmel anschauen. Und wenn man auf einen kleinen Ausschnitt am Himmel eine Million Sterne angucken möchte, dann sind die natürlich klarerweise nicht sehr hell,vielleicht zwei helle und in diesen paar Quadratgradler angeschaut hat,und das ist aber auch gleichzeitig das Problem von Kepler. Kepler hat natürlich war ein unfassbaren Fundus an an Daten geliefert für für Excel-Planeten,und Statistik ist immer noch die absolut größte Quelle, aber die meisten sind eben aufgrund dessen, dass ein Feld angeschaut wurde und später mit Keplern mehrere Felder, aber im wesentlichen war's optimiert auf dunkle Sterne. Das heißt, so elfte bis 16te Größe.Astronomisch gesprochen. Da kommt einfach nicht, ist einfach unmöglich einen Radialgeschwindigkeitsmessung von einem erdähnlichen Planeten bei der 16. Größe zu machen.Dreihundert Nächte investiert, dann schafft man's vielleicht in speziell Spezialfällen, aber man kann das nicht nicht ständig tun und da kommt eben dann Keops ins Spiel.Wir können dann einfach helle Sterne anschauen, die eben,da in der Regel eben nicht von Kepler entdeckt wurden, aber zum Beispiel von Tess oder eben oder eben Radialgeschwindigkeiten, wo wir wissen, ist ein Planet. Schauen wir doch mal nach, ob er einen Transit macht,das war die Idee von Keops.
Tim Pritlove
Okay, also man wollte halt quasi eine Lücke füllen im Beobachtungs ähWeltlauf, weil die ganze Disziplin ist ja noch relativ neu. Man weiß zwar jetzt schon so einiges, aber im Prinzip ist es ja so eine der Felder eigentlich derzeit in der Astronomie, wo man sagen kann, da ist noch am meisten zu holen in gewisser Hinsicht.
Christopher Broeg
Das schnelle wachsendste Gebiet würde ich sagen der Wissenschaft.
Tim Pritlove
Mhm. Letztendlich nicht so einfach, wenn man sich mal ausgedacht hat, man müsste das mal machen, so was dann auch wirklich ins All zu bekommen. wie ist denn wie ist es denn dazu gekommen? Also Cross ja auch eine ganze Menge Geld.
Christopher Broeg
Ja also zuerst gab's ja noch keine S-Klasse Mission von der ESA. Da war dann mal die Idee, was könnte man denn auf die Beine stellen und,und die Überlegung war mit der Schweiz, Schweden und Österreich,mal zu schauen, was kann man denn zu dritt auf die Beine stellen für so eine kleine Mission. Mal größere Länder wie Deutschland, Frankreich haben ja regelmäßig,Nationale Weltraummission, aber für die Schweiz ist das jetzt sozusagen im wissenschaftlichen Sinne das erste Mal und da haben wir halt angefangen eine was macht man? Man macht eine Machbarkeitsstudie, haben halt Finanzierung bekommen, nicht viel einfach ein bisschen Gehälter, um dran zu arbeiten,um einfach mal,Glaube es war ein Jahr lang haben wir halt mit Ingenieuren hier wären wir sehr gute Leute im Institut die die was Instrumentenbau angeht immer geschaut,was kostet das? Was kann das technisch auch mit Partnern geschaut, halt die Spezialisten aus den verschiedenen Gebieten,natürlich mit den Wissenschaftlern was muss es können und dann war da schnell klar, dass wir so eine größere 20 Parts per Million, also,wenn die Erde einen Transit macht vor einem sonnenähnlichen Stern, macht ihn eine Verdunkelung von 100 PPM parts per Million, also,noch minus vier ist die Verdunklung. Also genau sind's ungefähr,achtzig PPM, das heißt, wenn man das mit einem gewissen Signal Rauschverhältnis messen möchte, möchte man mindestens fünfmal besser sein als Hund, also sagen wir mal 20 Pats per Million, war das,das Requirement.
Tim Pritlove
Die Verdunkelung misst man in parts per milion.
Christopher Broeg
Deswegen Weltraum, weil man am Boden kann man das ja auch machen. Man kann natürlich eine Lichtkurve aufnehmen vom Boden, aber nimmt einfach jede Minute ein Bild und und extrahiert dann den Fluss. Aber damals hat man so vom Boden typischerweise einen tausendstel geschafft.Also ein also tausend parts per Million und vielleicht in Supernächten ein super Standort nochmal 500 PPM,Heute schafft man so vielleicht manchmal, wenn man wirklich gutes 250 PPM vom Boden,aber wenn man besser werden will, muss man ins All gehen, weil die Atmosphäre einfach zu unkonstant ist.
Tim Pritlove
Mhm, also auch mit den großen Teleskopen in der Atacama.
Christopher Broeg
Es nützt nichts die Größe, weil die hellen Sterne machen so viel Licht, die kann man mit den großen Teleskopen teilweise gar nicht beobachten, weil die zu hell sind.Und aber für die Schwankungen nützt die Größe des Spiegels eigentlich nichts.Ein bisschen was wegen dem aber im Großen und Ganzen, wenn die Atmosphäre dann eine Wolke durchzieht, selbst eine unsichtbare, einfach eine höhere Wassergehalt als gerade eben.
Tim Pritlove
Hm
Christopher Broeg
Dann schwankt das schnell mal ein paar hundert PPM.
Tim Pritlove
Also muss man ins All. Okay, aber es war schwierig, das zu finanzieren.
Christopher Broeg
Ja, das da war ich an der Finanzierung war ich nicht beteiligt. Irgendwann war das mal finanziert mit der Machbarkeitsstudie, haben wir Geld bekommen, auch von Ruhaxpace, die hier,eigentlich die größte Space-Firma in der Schweiz ist. und also und vom,vom Ministerium SBFE also Forschungsgelder geben einfach mal ein bisschen Geld, um mal ein bisschen konkreter zu schauen wer das machbar und am Ende kam raus machbar aber,schwierig für das Budget, was wir hatten und wir hatten auch noch überlegt infrarot, also die ursprüngliche Idee war,Sowohl im Infraroten als auch im optischen zu beobachten und ein Strahlteiler zu benutzen auf zwei Detektoren, ein Info-Rotdetetektor und eine CCD-Kamera.Klassisch wie früher in der Spiegelreflex-Digitalkamera war. Gleichzeitig, weil als würde er noch mehr Informationen geben und da war dann aber relativ schnell klar, dass das wahrscheinlich zu teuer ist mit dem Infrarot.Ja und das war dann der Stand wo ESA die Ausschreibung gemacht hat plötzlich jetzt für eine S-Klasse Mission.
Tim Pritlove
Und S-Klasse ist so ein beschleunigtes Programm.
Christopher Broeg
Genau, also normal gibt's ja in der ESA eigentlich zwei Typen Formission, gibt die M-Klass, also im medium und die L-Class und Ella ist einfach large und M einfach vom finanziellen Möglichkeiten,Also meistens sind das so eine,500 Millionen, glaube ich, ist eine und zwei, 300 Millionen, je nachdem ist eine M-Class-Mission, wobei das meistens der Esar-Beitrag ist, aber es gibt ja dann auch noch Beiträge von den Ländern, die Instrumente finanzieren und so weiter.Und S-Klass war eben neu und hieß einfach, Eser zahlt 50 Millionen Cost Capt, also maximaler Beitrag,schlagt mal was vor, so ungefähr.
Tim Pritlove
Der Rest muss von irgendwo anders herkommen.
Christopher Broeg
Das haben wir dann eben gemacht. Wir waren natürlich gut vorbereitet. Wir hatten gerade ein Jahr lang gemacht, also Machbarkeitsstudie.Und dann war technisch eigentlich klar, was wir wollen, aber natürlich muss man's dann,hatte ein halbes sechs Monate glaube ich Zeit für die vom Call bis zur Eingabe des,und das ging relativ schnell und dann hatten sie ja ich glaube zwei achtzehn oder zwanzig Eingaben und uns haben sie dann ausgewählt.
Tim Pritlove
Das ist sicherlich ein Feiertag gewesen hier, oder?
Christopher Broeg
Ja, das war war gut.
Tim Pritlove
Könnte ich mir vorstellen. und wie läuft das dann ab? Also wer wer also wer war dann letzten Endes beteiligt außer der Esar?
Christopher Broeg
Ja zunächst einmal ein großer Teil des Antragsschreiben. Es war auch erstmal rauszufinden, wer alles mitmacht, weil wir hatten ja vorher wirklich ja gesagt, Schweden, Österreich, Schweiz.Aber man kann keine Eselmission mit drei Ländern machen, am Ende müssen alle 22 sind's glaube ich Eser Mitgliedsstaaten auch zustimmen.In einer Mehrheitsentscheid, auch wenn's keine teure Mission ist, will ja jeder was davon haben sozusagen,und am Ende waren wir dann elf Länder plus Esa.Also und die muss man natürlich alle an einen Tisch kriegen. Uns hat's dann auch ein paar Mal eine Umschichtung gegeben, war mal Anfang welche zugesagt haben. Aber dann,Andere Missionen noch gerade am werden oder nicht werden, dann wird plötzlich eine Mission ausgewählt, die niemand erwartet hat. Bei den Emissionen zum Beispiel und dann sagt ein Land plötzlich, oh, jetzt brauchen wir das ganze Geld für die Emission, wir haben kein Geld mehr für die Essenmission.Und dann gab's noch ein paar Unterschiede. Aber jetzt sind so die Hauptländer sind eben Schweiz natürlich als Co-Leitung mit der ESA,dann ganz wichtiger Beitrag von Spanien, die die Bodenstation zur Verfügung stellen, was sehr untypisch ist für die ist aber eigentlich die Esa immer die Bodenstation stellt, aber das wäre einfach zu teuer gewesen,und Italien hat die Optik designt und gebaut und eingebaut in die mechanische Struktur, mechanische Struktur des Teleskops haben wir gebaut.Und alles getestet und kalibriert et cetera aber aber das Teleskop war die optischen Elemente kommen von von Italien,Deutschland war noch sehr wichtig, die haben die ganze quasi die Kamera gebaut, also die Vokalebene mit dem Detektor die Ausleseelektronik, die super stabile Spannungsversorgung, also eigentlich das,Herzstück.
Tim Pritlove
Wer ist das, wenn man sagt, Deutschland hat es gebaut in Italien das.
Christopher Broeg
DLR Berlin hat es gebaut.Und tja und dann gibt's noch eine Reihe andere, also die Belgier haben den den Buffet, also das ist quasi die Streulichtblende vorne gebaut, die sieht man schon für Coro gebaut hatten, natürlich angepasst und auch der Deckel, man hat einen Deckel,nur das ganze Instrument vor Dreck schützt, bis es aus der Rakete draußen ist und wo wundert es immer unser einziger Mechanismus. Also es muss dann auch aufgehen, wenn's oben ist.Und,Ja, Frankreich hat Bodensegment für die Datenreduktion mitgearbeitet, England ebenfalls Schweden ist immer noch dabei. Sie helfen auch bei Datenauswertung.Habe ich jetzt jemanden vergessen.Ungarn haben die Radiatoren gebaut, also die die muss die Wärme wegkriegen und kühlt. Wir können ja Detektor auf Minus 45 Grad passiv. Ähm.
Tim Pritlove
Also nur durch Wärmeableitung. Mhm.
Christopher Broeg
Wärme ab, Wärmeableitung, genau. Ja und vom Consortium.
Tim Pritlove
Das klingt aber jetzt echt aufwendig, also das alles zu koordinieren, das wird am Ende auch ein funktionierender Apparat dabei rauskommt und auch permanent so viele Gruppen in Synk zu halten. Ist das nicht total schwierig? Das ist dann hier gemacht.
Christopher Broeg
Also das ist hier gemacht worden, ja. Ich habe hier geleitet die Mission und ich hatte dann Hilfe von einem Instrumentmanager,Managerin, die wir schon nie, die sich dann halt hauptsächlich ums Instrument gekümmert hat. Aber wir waren ja nicht nur fürs Instrument zuständig. Ich war eben auch für die ganze Bodensegment ganze da ganze ganze Zock heißt das Science Operation Center in Genf zuständig,und ja das war schon die Koordination war schon Hauptaufgabe. Man muss ja dann Spezifikationen schreiben und muss die dann runterbrechen auf die Subsysteme und die ganzen Schnittstellen müssen ja alle stimmen. Das heißt wenn die Teile hier ankommen, dass die dann auch zusammenpassen und,das ist noch das Einfachere auch zusammen funktionieren,Es war schon damals gemerkt, es war eine kleine Mission, aber die Schnittstellen waren genauso fast genauso kompliziert wie bei einer M-Klassemission.
Tim Pritlove
Gleich noch eine größere machen können. 290 Kilogramm wiegt der gesamte Satellit, das ist ja jetzt für Größenordnung nicht so viel.Wahrscheinlich auch nicht alleine an Bord der Rakete gewesen, oder?
Christopher Broeg
Ja genau, also es war von Anfang an dann waren's klar, schon zur Zeit der Machbarkeitsstudie, dass wir uns keine eigene Rakete leisten können,Gab immer wieder mal Gerüchte, dass die Schweden haben mal einen Satelliten, Odin hieß der mit irgendeiner alten russischen Atomintercontinentalrakete hochgeschossen für irgendwie zwei Millionen Dollar. Aber die Zeiten waren vorbei.
Tim Pritlove
Mhm. Aber die Zeiten waren vorbei.
Christopher Broeg
Quasi, die haben's quasi nur bevor es irgendwie das Verfallsdatum der Rakete abläuft, haben sie sich noch ist dann einfach irgendwo hingefahren oder Kette hoch und abgeschossen irgendwo aufm Feld,Aber wenn man eine normale Rakete kaufen muss, dann ist es so teuer. Das sprengt total unser Budget. Und deswegen war von Anfang an klar, dass wir als sogenannter Ride irgendwo mitfliegen.Und dann zahlt man nach Gewicht meistens. Also wenn jetzt sagen wir mal der Launcher zwei Tonnen ins niedrigen Erdomlaufbahn befördern kann und er wiegt aber nur 300 Kilo, dann zahlt man und der andere ist der vielleicht 1,5 Tonnen.Zahlt man halt nur ein Fünftel oder so vom Preis und das ist dann schon wird dann langsam erschwinglicher.
Tim Pritlove
Wie findet man da so seinen Ride? Gibt's da gibt's da eine App für oder wen ruft.
Christopher Broeg
Nein, das war sehr schwierig. Also ich meine, als wir es dann mit der ESA gemacht haben, wir konnten uns ja dann aussuchen in dem Art Proposal, wer macht was und wir haben ja gesagt, Esa macht macht ihr mal Launch, sucht ihr uns mal einen eine Rakete? und bezahlt auch dafür. Also das war das war sozusagen,Teil zusammen auch natürlich mit der Plattform, also wir haben die den Satellit eigentlich in Auftrag gegeben, was dann am Ende Airbus Spanien gebaut hat,und die hatten ziemlich zu kämpfen. Also wir wir wollten ja nicht irgendwo hin,Wir wollten ja in eine niedrige Erdumlaufbahn. Wir wussten auch, dass wir zwischen 600 und 800 Kilometer Höhe müssen und dass wir einen sogenannten Sonnensynkronen-Arbeit müssen. Das heißt,normalerweise wenn ein Orbit um die Erde sich dreht, ist der fix und die Erde dreht sich aber um die Sonne, das heißt die Richtung der Sonne zum Orbit ändert sich über das Jahr.Und es war wär aber für uns nicht gut gewesen, weil dann wäre die Sonne immer mal von der einen, mal von der anderen Seite gekommen. Wir wären mal in Erdschatten gekommen, was gar nicht gut ist für die Temperatur stabilisierung.Und da haben wir relativ schnell kam nicht wochenlang ich monatelange Studien aber unser endgültiger Orbit war dann eben sonnensynchron. Das heißt man kann den Orbit so machen, dass er sich wie ein Gyroskop mitdreht oder wie einen wie ein Kreisel wie ein Kinderkreisel.
Tim Pritlove
Gestern über die Pole oder? Mhm.
Christopher Broeg
Sie haben einen Polar Orbit SSO nennt sich's nennt man Sunsynce ORBIT, wo man einfach nicht so eine Neigung einstellt, dass eben nicht genau über die Pulle geht, sondern.
Tim Pritlove
So ein bisschen dran vorbei.
Christopher Broeg
Weil die Erde eben nicht rund ist, sondern so ein bisschen so ein Donut oder bisschen so eine zerdrückte Kartoffel gibt's eben dann Drehmomente auf diesen Kreisel und dann dreht's fährt der Kreisel an zu drehen,doch die Neigung der Bahn kann man die Geschwindigkeit der Rotation also die Präzisionsgeschwindigkeit quasi setzen und man man macht halt so das sind 365 Tagen einmal rundum dreht,Synchron.
Tim Pritlove
Sonnensyndron und man hat die Sonne immer von derselben.
Christopher Broeg
Das machen viele Satelliten, auch die deswegen waren unsere Hoffnung, dass wir mit einem also wir sind auf sechs Uhr, dann kann man durch die Uhrzeit einstellen, wann wenn man jetzt zwölf Uhr immer über die übern Horizont kommen oder,oder morgens um sechs oder mittags um zehn, also die ganzen Radar-Sattelliten hat sich da rausgestellt, fliegen wir morgens um zehn weil.
Tim Pritlove
Über den Pool oder über die.
Christopher Broeg
Oder kommen dann über den über den Äquator hoch sozusagen. So ist es definiert, diese local time of the exanding Note.
Tim Pritlove
Über Äquator, alles klar. Mhm.
Christopher Broeg
Sie stehen immer dann ganzen Tag, der Orbit bleibt sozusagen und dort wo die Uhrzeit zehn Uhr ist, ist immer der Orbit und in einer Stunde ist man herum oder in in Stunde, zwanzig Minuten,und weil die halt immer Sonne brauchen, das heißt die wollen halt auch die Sonne von hinten haben. Wenn sie optisch beobachten, ist es um halb 11 Uhr am morgens am wenigsten Wolkenbedeckung, deswegen fliegen die alle um halb elf,Es hat uns war aber für uns nicht gut, wir brauchten sechs Uhr, das heißt wir haben also einen Radar Satelliten gesucht, der auch um sechs Uhr morgens fliegt, weil da hat man den Vorteil, dass man immer die Sonne im Rücken hat, immer volle Power. Und Rad aus der dritten brauchen halt viel Strom.War dann nicht so leicht einzufinden. Die Es hat ganz schön schwitzen müssen, bis sie uns dann einen mit Flug gefunden haben.
Tim Pritlove
Man kann nicht einfach jetzt bei irgendeinem anderen Satelliten mitfliegen, der wo jetzt grad nochmal Platz ist, sondern es muss halt im Prinzip ein ähnlicher Orbit sein bis hin zu dieser Feineinstellung, damit das irgendwie passt.
Christopher Broeg
Ja, es muss fast genau der gleiche Orbit sein, also,man kann dann schon noch korrigieren. Also die Höhe muss nicht genau dieselbe sein oder so. Also in unserem Fall war es sogar so, dass wir dann gestartet sind letzten Endes mit einem italienischen Erdbeobachtungsattelliten Radar und optisch.Halb Militärisch, halb Zivil und noch mit drei kleineren Satelliten und Kubsatz.Und wir sind ja mit der Sojus gestartet. Es und dann und und die Oberstufe war die Fregatte. Das,und die kann Sachen, die nicht jeder Launcher kann, also der hat es dann gestartet, hat den Hauptpassagier, also den italienischen Riesensatelliten mit knapp zwei Tonnen auf seiner Höhe ausgesetzt. Ich weiß es nicht mehr auswendig, ich sage jetzt mal bei,achthundert Kilometer,Hat er es dann wieder runtergegangen, hat den Lange Adapter abgeworfen, damit er in der Atmosphäre verglüht, ist wieder hochgegangen, also so von 400 Kilometer auf unsere siebenhundert Kilometer, hat uns ausgesetzt,und du kannst zwischendrin immer wieder das Drehwerk ausgeschaltet eben und dann nachdem uns ausgesetzt hatte, hat er dann noch die anderen zwei Kleinstatiliten ausgesetzt und dann noch die Cubes hats. Alle auf einer anderen Höhe. Aber was man eben nicht ändern kann, ist die Intonation.Oder die Uhrzeit, weil dafür braucht man wahnsinnig viel Sprit. Also schon die Höhe braucht schon Sprit, aber wenn man halt,eher leichter ist als der Launcherschaft, dann hat er halt noch ein bisschen und es war war aber nicht so ganz die gewöhnliche Sache, dass der so viele Manöver gemacht hat, diese Fregadoberstufe.
Tim Pritlove
Und auch so ein Höhenunterschied auch ausgleichen muss, ja. Klingt jetzt noch relativ viel. ÄhmSojus, aber nicht in Russland gestartet, sondern in KoroIn Französisch-Guyana. Da gibt es ja seit einiger Zeit nicht eben nur die Ariane, sondern eben auch noch einen Startplatz für eine an den Standort angepasste Sojusund einem die italienische WEGA Rakete gibt's ja jetzt mittlerweile auch noch, die kann man aber nicht in Frage.
Christopher Broeg
Nein, die Wäger kamen nicht. Ich meine, man muss eben auch einen einen Passagier finden, der wo man mitfliegen kann,Ist auch ein bisschen ich glaube die war auch ein bisschen schwächer, das heißt muss ja dann noch Platz sein,Also wir haben eigentlich von Anfang an haben wir designt, muss ja jedes jede Paket ist ja anders, was die Vibrationen angeht. Es gibt zwei Sachen, es gibt die Vibrationen vom sage ich jetzt mal vom Raketenantrieb,gibt's den Schock von der Separation der Stufen und beides ist muss im Design des Instruments berücksichtigt werden. Also es nützt nichts, wenn man in Vibration überlebt und dann beim Absprengen der Stufe einem der Spiegel zerspringt.Wir haben von Anfang an ja gewusst, wir können's uns nicht aussuchen. Also wir haben Designt für Vega, für Sojus und für Falcon nein. unser Design Parameter,Falko nein war uns immer klar, dass die Essa das nur ungern macht mit einer amerikanischen Rakete zu starten. Wozu hat man die eigenen,Aber aber man musste eben dafür designen und wir haben die relativ und ganz am Anfang hatten wir noch die PSLV, die indische. Die konnten wir dann zum Glück irgendwann mal,lassen, weil die sehr laut ist. Also im gewissen Spektralbereich ist die war die relativ schwierig von den Spezifikationen.
Tim Pritlove
Laut beim Start.
Christopher Broeg
Also laut heißt einfach, dass die Vibration sehr große Amplitude haben.
Tim Pritlove
Mhm. Okay, das heißt es war dann klar, Sojus hat man dannwie läuft denn das eigentlich mit der Sojus in Guyana? Ist das alles unter der Ägide der Eser oder ist man dann auch mit den Russen direkt in Kommunikation wie.
Christopher Broeg
Nein, also das ist muss man sich bisschen vorstellen wie eine russische Enklave.Wo das fahren die also gibt's dann ein Kontrollzentrum wo die Russen sitzen, die die einen, die die Rakete steuern, die anderen, die die die Oberstufe steuern.Sitzt nochmal woanders im Hauptkontrollzentrum bekommt ihr Information, aber es ist wirklich eine relativ russische Geschichte.
Tim Pritlove
Okay, das heißt, sie haben da noch ein eigenes Startkontrollzentrum, so wie ja auch Arianes Bass nochmal ein eigenes Startzentrum hat, unabhängig von dem eigentlichen Kontrollzentrum für alle Starts, wo alle sitzen und,dass es funktioniert. Ich war mal da, da habe ich mir das mal angeschaut, aber bei den Russen war ich nicht. Ähm,Okay und muss man viel mit denen kommunizieren?
Christopher Broeg
Also wir jetzt nicht, weil's ja war ja Verantwortung den Staat zu organisieren. Das heißt das ESA-Projektteam war da schon öfter unten. Vor allem dann in der,letzten Phase, wo die wo dann das die letzten Tests gemacht werden und irgendwann muss ja auch unser Satellit auf diesen Adapter montiert werden,das also die Nutzlastverkleidung angebracht werden und,In diesem Fall gibt's ein sogenanntes ASUPS, das ist wie so ein Käfig, den man drüber setzt, wo dann oben drauf der Hauptpassagier sitzen kann.
Tim Pritlove
Wird man sie der Reihe nach dann abwerfen kann.
Christopher Broeg
Man sie der Reihe nach dann abwerfen kann und daher gibt's schon relativ viel, glaube ich, Kontakt, aber wie gesagt, es war jetzt nicht unser Verantwortungsbereich.
Tim Pritlove
Okay, das kriegt man dann einfach als als Service sozusagen oben drauf. Der Start war dann am 18. Dezember 219 und hat offensichtlich gut funktioniert.
Christopher Broeg
Gut funktioniert. Gab einen Tag Verzögerung, war noch recht spannend, also wir mussten halt immer ein bisschen runter. Wir durften runter fliegen und zuschauen.War mein erster Start mein einziger bis jetzt.
Tim Pritlove
immerhin.
Christopher Broeg
War aufregend, aber am Anfang hat's nicht funktioniert. Sie muss dann so, ich weiß nicht mehr genau, um zwei Uhr auf morgens aufstehen. Wenn wir mal um sechs Uhr,morgens local time of the sending, Nordart heißt das der Start auch ungefähr um sechs Uhr morgens ist, also so um fünf Uhr vierzig oder so, Ortszeit war das und,man musste dann irgendwann drei Stunden vorher dort sein. Fährt er mit dem Bus rausgekarrt in den Urwald dort und ja dann waren wir noch im Bus und dann hieß es, Start Abbruch.Der Computer, der hat irgendwie so ein Konditionsfehler gemeldet. Hat irgendwie.
Tim Pritlove
Dann ist man sofort Schluss.
Christopher Broeg
Sofort Schluss und und wir hatten schon gedacht, oh je, also ich dachte persönlich schon, ich fliege morgen wieder heim, weil unverrichteter Dinge,Man kann die nur, ich weiß nicht mehr die Zeit, ich glaube acht Stunden lang kann man die betankt lassen, dann muss man den Treibstoff abpumpen.
Tim Pritlove
Dann dauert's wieder.
Christopher Broeg
Dann dauert's wieder, weil die sind ja die fliegen ja mit Kerosin, die die aber brauchen ja dann Flüssigsauerstoff. Und der ist sehr kalt, der hält kann man ja nicht ewig,drin lassen und dann da wenn man das den Fehler nicht findet also irgendwie hat wohl die Zeit Synchronisation zwischen dem Computer und der Bodenstation nicht funktioniert,aber die Russen sind halt zwar ich glaube 3zwanzigste Flug von,Französisch-Kujana, aber wahrscheinlich der, was ist die Zahl nicht? Da war der hundertste Flug oder mehr von überhaupt der Sojus heißt die wussten was sie tun,Die haben dann aus meiner Sicht das Undenkbare gemacht. Die sind haben die die Rakete enttankt, also nur den Sauerstoff.Alles innerhalb von 24 Stunden sind hochgeklettert, haben irgendeinen Kappe a Schraube ab, paar Schrauben abgeschraubt, haben zwei Platinen rausgezogen, neue Platinen reingesteckt, die da zugeschraubt. Systemcheck, am nächsten Tag ging's los.
Tim Pritlove
Die machen das ja auch schon eine Weil.
Christopher Broeg
Muss das aber sich so vorstellen, normalerweise bei einem Weltraum also bedeutet bei uns im Instrument, wenn man da eine Platine austauschen würde, würde das so funktionieren, man macht die Kiste auf, die ist aber geklebt zu der zusätzlichen Schrauben,nimmt man die raus, baut die wieder ein,klebt die wieder, macht die wieder zu und dann muss mindestens nochmal einen qualifizierender Delta-Qualifikationsvibrationstest stattfinden, um zu checken, dass alles geht und mit nachträglichen funktionalen Test,Das dauert und das kann man ja auf einer Rakete sowieso nicht machen. Müsste man sie alles wieder runternehmen von der Rakete.
Tim Pritlove
Nur die Rosen sind da einfach ganz on und sagen, haben wir schon zehn Mal gemacht, passt schon.
Christopher Broeg
Hat alles geklappt ja und am Ende perfekt geklappt. Also wir mussten nicht mal ein Orbit Korrekturmanöver fliegen.
Tim Pritlove
Ähm,Was mir mal interessieren würde ist, was ist denn eigentlich drin in so einem Satelliten? Wie wie ist der so aufgebaut? Was was,an was für Komponenten muss man denken. Klar, man hat jetzt so das eigentliche Instrument und die Optik und den Spiegel und die entsprechenden Klappen, die sich öffnen und schließen müssen. Aber die ganze Kommunikation dieser einzelnen Teile ineinander, wie ist das organisiert? Was für ein Aufwand wird da getrieben in so einemGerät, wie komplex ist das.
Christopher Broeg
Ja es ist eigentlich relativ simpel was die Kommunikation angeht aber ich meine was muss in einem Satelliten drin sein, also muss die Plattform muss dann erstmal mit Strom versorgen, also normalerweise in einem Erdumlaufband sind das Solarpanels,bei allen Missionen, außer wenn man mal zu Udonus rausfliegt, dann geht das nicht mehr.
Tim Pritlove
Dann braucht man Atomreaktoren, mhm.
Christopher Broeg
Ja nicht Reaktoren dann meistens so radioaktive Thermo-Nuklear-Devices, also die die durch die Wärme doch zerfallen einfach Strom erzeugen.Aber sonst sind's einfach Solarzellen, dann halt irgendwie ein Power Converte, der einem die die Spannung oder die Spannungen nennen, die man so braucht halt aus den unregulierten 32 irgendwie also jetzt mal 21 bis 34 Volt Solarzellenstrom liefert,und dann natürlich die der Board Computer, also der das die Plattform steuert,und die mechanische Stabilität, die ganze Struktur muss man bauen natürlich, wo man dann auch die Instrumente montiert sind. dann braucht man irgendeinen Antrieb,in unserem Fall eigentlich nur im Weltraum Weltraumstrott ausweichen zu können und am Schluss wieder die Orbiting machen zu können, also um den nicht noch selbste Weltraumschrott zu werden am Ende der Lebensdauer.
Tim Pritlove
Wichtig.
Christopher Broeg
und dann ganz wichtig die Lageregelung und es wird eigentlich in der Regel mit sogenannten Reaction-Weels, also mit Schwungrädern gemacht,in der Regel mit vier Stück. Drei braucht man, eins, für jede Achse und ein viertes aus.
Tim Pritlove
Resultanz gründen.
Christopher Broeg
Redondanz und da muss man sich so vorstellen, wie der Eisläufer, der die Arme anzieht und dann schneller wird. Er wird auch Drehmpulserhaltung.Kann ich wenn ich im Raumschiff bin und fange an irgendwie ein,ein Gyroskop hoch zu beschleunigen. Dann fängt das Satellit an in die andere Richtung zu drehen. Und so kann man halt in alle Richtungen den Satellit wenden und neigen, wie man will.
Tim Pritlove
Jeder, der schon mal so ein Fahrrad in der Hand gehalten hat, was wo das Rad sich dreht und die Bewegung macht, kann man sich die Kräfte ganz gut.
Christopher Broeg
Oder Motorradfahrer, der Sprünge macht und mit Gashebel sozusagen die Vorderrad hoch und senken kann, das ist das Gleiche.
Tim Pritlove
Mhm. Das Gleiche. Mhm.
Christopher Broeg
Und tja und dann gibt's noch bei uns im Fall gibt's noch Magnet,heißen die, also Magnetfeld Sensoren aber auch starke Elektromagneten in dem man,da kann man dann das Erdmagnetfeld ausnutzen, um auch einen Drehmoment zu erzeugen. Weil weil diese Schwungräder, die würden immer schneller und schneller und schneller sein, weil zum Beispiel,Luftwiderstand oder irgendwelche Effekte sind meistens nicht immer genau symmetrisch verteilt, sondern neigen dazu den Salitten immer die gleiche Richtung zu drehen,Wenn es Schwungrad immer die gleiche Richtung ausdrehen korrigieren muss, wird's immer schneller und schneller und schneller, dann muss man die immer wieder entladen, sagt man dem. Und das kann man entweder mit,Raketendüsen Düsen machen. Da braucht man aber Treibstoff oder man kann's eben mit Magnet Drehmoment am Magnetfeld machen und wir machen's mit Magnetfeld, dann braucht man überhaupt gar keinen Treibstoff.
Tim Pritlove
Magnetfeld der Erde.
Christopher Broeg
Wir sind in einem niedrigen Orbit, siebenhundert Kilometer. Also er hat sechstausend Kilometer Radius. Also siebenhundert Kilometer ist nicht sehr hoch. Noch voll im Erdmagnetfeld und kann sich da quasi festhalten.
Tim Pritlove
Man bremst sozusagen die Räder mit dem Magnetfeld der Erde ab. Wow. Nicht gedacht, dass das geht. Diese ganze Plattform muss man da alles neu erfinden oder gibt's da irgendwas, worauf man aufbauen kann?
Christopher Broeg
Nein, es gibt also in unserem Fall haben wir es wurde eine Ausschreibung gemacht und der Sieger der Ausschreibung war am Schluss Airbus Spanien und die haben das sogenannte AS zweihundertfuffzig Plattformen,Ungefähr 250 Kilogramm, weiß nicht ganz stimmt. Also wir waren noch ein bisschen größer als wir gebraucht hätten und die haben sie dann im Wesentlichen genommen und verkleinert,weil wir hatten eben Spezifikationen, dass wir als Passagier in die eben in diese Passagier,Sagen Löcher auf der Rakete passen müssen.Waren die eine Standardplattform in der Regel zu groß und deswegen mussten wir uns so ein bisschen verkleinern, wir mussten auch andere Schwungräder verwendet werden als eigentlich gedacht, weil die eben zu groß waren und paar Komponenten getauscht und im Großen und Ganzen ist das eine existierende Plattform, das heißt die ganze,ganze Software vor allem die ganze Computertechnik, die ganze Redundanz von dem ganzen System,antrieb war vorhanden und muss halt angepasst werden aufs aufs konkrete Nutzung, aber es ist jetzt nicht, dass sie einen neuen Satelliten vom Reißplatz.
Tim Pritlove
Ist das dieses Astro-Bus-System, was da zum Einsatz kommt. So heißt das.
Christopher Broeg
Mhm. So ist das. Also A ist zwo for fifty ist das Astropost. Ich möchte jetzt nicht mit Astrium verwechsle.Ja, ich glaube, das ist dasselbe, ja.
Tim Pritlove
Mhm. Okay, also man hat quasi so einen Baukasten, wo man womit man mal schon mal arbeiten kann. Also man muss jetzt nicht wirklich Satelliten neu erfinden, sondern,man man man greift da einfach auf eine bestehende Technik, sucht sich was in der passenden Größenordnung. Jetzt waren wir bei 29 Kilo, 25 passt noch ein bisschen mit ein paar Anpassungen und dann kann man im Prinzip,seine Konzentration auch auf das stecken, worauf man wo man ja auch die Expertise hat. Alsoet cetera, Datenkommunikation muss man dann komplett selber machen oder wird das dann auch schon so teilweise abgenommen.
Christopher Broeg
Datenkommunikation funktioniert oft auch in unserem Fall über sogenanntes Push-System, also,POS, also wofür steht das jetzt? Paket irgendwas System, also man schickt Datenpakete, die halt standardisiert sind, gibt's eine gibt's einen Standard, die eigentliche Leitung, über die die geschickt werden, gibt verschiedene. Also wir kommunizieren jetzt mitm Raumschiff, über den sogenannten Milchstandard.Ein militärischer Bus,Neuer wäre Space Wire, da kommunizieren wir mit unserer Kamera intern und am Ende werden aber sogenannte Puss-Pakete geschickt, die immer so funktionieren. Man schickt immer ein Telekommando.Zum Beispiel kann das Telekommando sein, ladet die Applikationssoftware und dann antwortet das andere Gerät mit einem,gibt's verschiedene eben, alles in Ordnung, Befehl abgelehnt, Befehl geschlagen, Befehl ausgeführt, kommen wieder so Statuspakete zurück,Es gibt auch sogenannte Housekeeping-Pakete, die man einstellen kann, zum Beispiel alle 60 Sekunden kommt ein Paket mit so,Daten, Informationen, Gesundheitszustand, nenne ich's jetzt mal, des des Instruments, die auch über diesen über diesen Bus Format gesendet werden. In unserem Fall werden die dann zum Raumschiff gesendet. Das Raumschiff hat einen Speicher.Er weiß einfach die Pakete vom Instrument, gerade in Speicher drei und da speichert er die ab. Und jedes Mal, wenn wieder Bodenkontakt ist,Werden die schickte Boden, Kommandos Signal, schickt mir alles, was du neu im Speicher hast und dann werden die runter runtergeschickt und dann gelöscht oder zyklisch überschrieben in unserem Fall.
Tim Pritlove
Genau und die Bodenkommunikation war dann immer über Spanien mit den Bodenstationen dort,Gut, also ich Kiob sagt man, ne? Kieops, Chios, Riops, wie man möchte. Ähm,Der Start ist gelungen. Das Ding hat sein Orbit gefunden. Dann dieser Sonnensynchrone.700 Kilometer hoch war das dann in etwa, ne? Und ja dann muss man ja erstmal so ein bisschen alles in Betrieb nehmen und testen. Das hat alles gut funktioniert.
Christopher Broeg
Hat super funktioniert, also als allererstes ja, man muss ja mal Kontakt bekommen. Das Erste nennt sich immer Liop, muss ich überlegen, wo die Abkreuzung steht, low earth orbit.launch and early orbit face so ja. Und also in dieser early obits wird's erstes Mal das Enttaumeln der Plattform, weil die,Versuche zwar den den die Rakete so zu entwickeln, dass die den möglichst Drehmoment frei rausspickt, aber ein bisschen dreht sich's immer,das hat unsere Plattform autonom gemacht soeben durch diese Elektromagnete doch eine bestimmte Konfliktation kann man so machen, dass sie sich dann,Erdmagnetfeld automatisch Sonnengerichtet aus taumelt, hat auch funktioniert,Und dann haben wir zwei sogenannte S-Bahn-Antennen, die quasi direkt zu nah sind. Die eine deckt die eine Halbkugel und die andere die andere Halbkugel ab, so dass man eigentlich immer Kontakt haben müsste, wenn man in Sichtweite der Bodenstation ist.Hat's schon beim ersten Versuch auf Antarktika hatten wir eine Station gemietet da hat schon gleich die Kommunikationsaufnahme funktioniert,wussten wir schon, es lebt.
Tim Pritlove
Also Bilderbuchstaat.
Christopher Broeg
Ja, auf jeden Fall.
Tim Pritlove
Kann man sagen. Okay, super.
Christopher Broeg
Dann kamen vier, fünf Tage Leop, also launch and early obit face von Airbus. Das war die Verantwortung von Airbus, die die Plattform geliefert haben,die waren dann am an unserem Mock in Spanien, aber aber es war nicht unsere Mockopperators verantwortlich, sondern die Mission Operation Center,also die Bodenstation, was sonst eh Sock in Darmstadt für die Esar machen würde,aber da hatte die Hauptverantwortung als als Hersteller der Plattform und da waren die Leute von Airbus vor Ort und unsere Leute waren auch vor Ort um die Befehle zu schicken,aber jeden hat quasi der Chef von dem Entwicklungsteam von Airbus sozusagen abgesegnet,machen die halt so Checks erstmal alle einzelnen Komponenten hochfahren. Also manches klar der Computer läuft. Sobald es die Rakete startet, einen rausschmeißt, wird der wird der gestartet.Und,aber so die ganzen Peripherie zu starten und zu schauen, das Erste, was wichtig ist, wären die Batterien geladen sind, funktionieren die Solarpanels. Weil da hat man nur weiß nicht wie viel Stunden Zeit, ein paar Umläufe, dann geht langsam die Batterie aus.Und das und wenn die kritischen Sachen dann gehen, dann wird eigentlich nur so checks die ganze volle funktionale es gibt so full functional Test, wo man halt alle elektronischen Komponenten auf Herz und Nieren überprüft, ob alles so funktioniert wie soll.
Tim Pritlove
Eigentlich ein super Service. Man kriegt sozusagen diese Plattform und damit ist dann auch gleich die ganze Inbetriebnahme auch aus der Hand gegeben. Also man kriegt quasi dann so einen.
Christopher Broeg
Von der Plattform, ja? Aber das waren eben nur die paar die ersten paar Tage. also das war jetzt erstmal Leopold, Leop ist wirklich nur so die Grund safety, wenn's dann in einem sogenannten Save-Mode ist, also alles.
Tim Pritlove
Passt. Mhm.
Christopher Broeg
Weihnachten und weil wir in der Mission sind haben wir die Bodenstation nicht für die Feiertage bezahlt. Also war erstmal eine Woche aber abwarten angesagt.
Tim Pritlove
Ob's zu teuer wäre die Leute.
Christopher Broeg
Und dann haben wir im im Januar nach den Feiertagen haben wir begonnen und da waren wir dann auch alle unten vom Instrument und vom vom Science Operation Center.Vom Instrument-Team und dann ging eigentlich die Inbetriebnahme los und die war in erster Linie Instrument, Inbetriebnahme, also Instrument einschalten, schauen ob's Instrument funktioniert, auch die ganzen Tests machen.Deckel ja noch zu. erstmal dunkel Bilder aufnehmen. Ähm,Ja, alle möglichen Modi testen und dann irgendwann natürlich der große Moment Deckel öffnen. Öffnet sich der Deckel.
Tim Pritlove
Und wenn er sich geöffnet hat, sehen wir dann mehr als wir vorher gesehen haben.
Christopher Broeg
Dann haben wir dann endlich dann den Tag funktioniert. Da war natürlich ein großer großer Feier. Ist zwar Triple redundant, sondern Deckel öffnen, aber man weiß ja nie.
Tim Pritlove
Beim Ersten schon funktioniert.
Christopher Broeg
Ab dem ersten funktioniert.
Tim Pritlove
Also drei verschiedene Mechanismen wie man das Ding aufkriegt.
Christopher Broeg
Nicht ganz, aber es gibt es in dem Fall ist so, dass der funktioniert so ist eine vorgespannte Feder, die,drei Federn, die es vorspannen. Auf der anderen Seite ist ein Bolzen und der Bolzen ist ähm,sondern wie sagt man dann Memory Shape Alloy, also so einen Gedächtnismetall ist da dran und wenn man dieses Gedächtnis Metall erhitzt, dehnt sich das aus und bricht den Bolzen. Und die uns gab er auch drei Heizer für diesen.
Tim Pritlove
Also Gedächtnis sozusagen anderer anderer Form und durch die Hitze wird diese Form dann wieder angestrebt und sprengt. Mhm. Man drückt ihn dann zusammen. Mhm.
Christopher Broeg
Genau. Also war einfach länger. Man drückt ihn dann zusammen auf eine kürzere Größe und wenn er wieder erhitzt wird.
Tim Pritlove
Länger sein. Das ist der erste Mechanismus. Oder den gibt's dreimal.
Christopher Broeg
Ja das ist nein nein nein ich sage nur die die heizt die die Federn waren dreifach, die Heizer waren dreifach den Mechanismus, den den Bolzen selbst gibt's nur einmal.
Tim Pritlove
Okay, also der hätte schon funktionieren müssen. Hat aber auch funktioniert und dann war der Deckel offen und dann kommt Licht rein und dann ist ja im Prinzip alles ready to run, oder?
Christopher Broeg
Haben dann schon noch einen Monat lang Messungen gemacht. Das ist vor allem Kalibulationsmessungen. Also zunächst mal muss man ja schauen, wo schauen wir hin,Man hat ja versucht, das Instrument mit Laser-Trackern und und allem drum und dran und und speziellen optischen Würfeln,Perfekt auszurichten zum Koordinatensystem der Plattform, sodass man sich so vorstellen, dass die Plattform hält ja die Lage und hat seine eigenen Star-Tracker, also seine eigenen kleinen Kameras, wo er sich am Himmel orientiert, wo er schaut,aber er muss ja wissen, wo das Instrument hinschaut. Unser unser Gesichtfeld ist nicht sehr groß, also im ungefähren Grad.Und dann muss man den Stern finden, den man angucken möchte und und das heißt das erste war mal ein Bild zu nehmen, aufn Stern zu gucken,und das zu schauen, dass wir einen richtigen Ort hinschaut,und du weißt nicht, was wir saßen in in Torachhorn oder also nicht in der Bodenstation, weil es war schon abends. Die Daten kommen dann ja immer abends um 20 Uhr kamen die dann,wieder über Local time of the sending note sechs Uhr. Das heißt, ihr habt einen Bodenkontakt morgens um sechs. Morgens um vier, morgens um sechs und abends um,Um fünf und um sieben oder so und bis die Daten dann da waren, war das halt um dann acht Uhr abends.Saßen wir alle um den Computer und haben das Bild runtergeladen und haben's angeguckt und zwar nicht der Stern, den wir sehen wollten.
Tim Pritlove
Woran erkennt man den Stern, dass es der Richtige ist?
Christopher Broeg
Wir hatten ja so einen einen Video-Astronomen im Teleskop, sondern einen Finding-Chart, wo die verschiedenen Sterne sind. Die man sehen sollte in der Helligkeit und zahlt einfach anders aus. Also es war nicht die gleiche Form von Sternen,zu suchen ein bisschen größeren Ausschnitt und dann.
Tim Pritlove
Suchen jetzt mit dem Computer suchen oder.
Christopher Broeg
Mit dem menschlichen Hirn ja.
Tim Pritlove
Aha.
Christopher Broeg
Am Anfang und haben da ziemlich schnelle gesehen, wo wir, dass wir halt gerade so außerhalb vom Gesichtsfeld sind.Es war der einfache Paar, aber da muss man eben ausrechnen auf mehr oder weniger aufm Blatt Papier,die stand mit Computer dann aber welche in welche Richtung müssen wir das korrigieren, in welche gibt ja drei Möglichkeiten damit wir dann richtig treffen.
Tim Pritlove
Was ich ganz verstehe ist, ich meine wenn da Star-Trecker sind, dann können die doch eigentlich,die orientieren sich ja quasi am kompletten Sternenfeld, nicht wahr? Die Dinger wissen halt, welche Sterne es gibt und wo die sind und wie die zueinander stehen. Damit müsste doch eigentlich die Ausrichtung schon stimmen. Warum warum guckt ihr dann nicht automatisch in die richtige Richtung?
Christopher Broeg
Ja weil die das ist die Ausrichtung der Star-Tracker stimmt, aber die Star-Trackers sind ja nicht also die wissen ja nicht, das Raumschiff muss ja sozusagen wissen oder gesagt bekommen, genau wie ist der Blickrichtung von unserem Teleskop relativ zu den Star Treckern.Schauen ja sozusagen so nach links und rechts.
Tim Pritlove
Ja. Und das Teleskop schaut nach vorne. Ja.
Christopher Broeg
Teleskop schaut nach vorne. Und der Winkel, genau muss er genau vermessen sein. In dem Fall besser als ein Grad genau.
Tim Pritlove
Okay, also es geht da um die Auflösung. Also grundsätzlich weiß man natürlich schon.
Christopher Broeg
Um die Auflösung, es geht um das Wissen, wie genau habe ich das Teleskop auf der Plattform festgeschraubt,oder auch wie genau habe ich's charakterisiert. Im Labor wurden eigentlich die Blickrichtung ist. Also wie beim Feldstecher wo schaut denn der Feldstecher eigentlich genau hin?
Tim Pritlove
Okay. Da kann man sich sozusagen vorher nicht nicht sicher genug sein, wo es wirklich ist. Also in etwa weiß man ja schon, wo man hinguckt. Nur es geht jetzt hier darum.
Christopher Broeg
Genau eben.
Tim Pritlove
Man muss es eben sehr genau machen, okay. So und wie und wie korrigiert man das dann?
Christopher Broeg
Wenn man weiß, in welche Richtung man falsch schaut, dann muss man ja nur dem Raumschiff quasi System ein Offset geben.
Tim Pritlove
Und dann drehen sich die Rädchen und dann guckt er in die richtige Richtung.
Christopher Broeg
Und wir haben's drei verschiedene ausgerechnet wir haben's ausgerechnet und Mock hat's ausgerechnet, haben alle ungefähr das Gleiche rausbekommen im gleichen Vorzeichen und das Wichtigste ist auch aus Vorzeichen.Das nächste Bild war dann genau in der Mitte.
Tim Pritlove
Okay, gut. Haben alle auch das metrische System benutzt sozusagen. So und das ist dann der Moment, wo es eigentlich losgehen kann.
Christopher Broeg
Ja, fast. Also wir haben ja viele Beobachtungen noch gemacht, so wir müssen ja den Dunkelstrom charakterisieren. Das haben wir mit geschlossenem Deckel gemacht, aber müssen natürlich dann auch schauen, mit offenem Deckel können wir den Dunkelstrom immer noch charakterisieren, aber sie haben die ganze Mission immer weiter machen müssen.
Tim Pritlove
Dunkelstrom ist sozusagen was bekommt man auf die Sensoren wenn's eigentlich dunkel ist. Genau. Um das sozusagen so ein so ein Helligkeitsabgleich, so eine Kalibration vorzunehmen. Mhm.
Christopher Broeg
Und auch die.
Tim Pritlove
Übrigens. Dunkelstrom gefällt mir sehr.
Christopher Broeg
auch die ganzen ja sage mal verschiedene Messmethoden und zu schauen funktioniert das,stimmt, wenn ich einen hell Stern angucke. Ich weiß, weil ich gucke Alpha Zentauri an. Ich weiß, wie hell der ist. Bekomme ich so viele Photonen, wie ich erwarte.Hat sich herausgestellt, wir haben 25 Prozent weniger bekommen und nach längerem Studium hat sich dann rausgestellt, dass es ein Fehler in der Kommunikation, im Interface mit den optischen Designern war, die Definition der Fläche,und,danach waren's nur noch irgendwie sieben Prozent zu wenig und hat ihnen herausgestellt, die die die Quanteneffizienz des Detektors in absoluten Zahlen ist sehr sehr schwierig zu messen,War schon immer ein Fragezeichen. Uns kam eine andere Messung vom Hersteller, die ein bisschen anders war als die die ESA gemacht hat und,gesagt, die Wahrheit liegt irgendwo dazwischen, also dann haben wir gesagt, okay, jetzt noch auch vier Prozent die Quanteneffizient falsch in absoluten Zahlen,Am Ende hatten wir dann so ein vier bis fünf Prozent noch Abweichung von der theoretischen Vorhersage. Danach sagt's dann gut genug. Für alle Optiken muss man ja wissen, wie viel Transparenz und.
Tim Pritlove
Also also es geht darum, wie wie viel Photonen kann das kann der Sensor tatsächlich zählen quasi.
Christopher Broeg
Genau. Man muss ja nachher auch die Belichtungszeit einstellen, ähnlich wie beim Fotografieren, dass man nicht überbelichtet und nicht unterbelichtet, muss man ja wissen, wie,hell ist der Stern dann und es gibt ja verschiedene farbige Sterne, also für verschiedene Spektraltypen wie sensitiv ist unser Teleskop.
Tim Pritlove
Alphazentari ist da ein guter Messpunkt, weil's sehr nah und.
Christopher Broeg
Jetzt als Beispiel gesagt, dass das war nicht den, den wir genommen haben, sorry, aber irgendwelche HD-Nummern genommen, die gerade die richtige Helligkeitsbereich hatten und grad gut sichtbar waren.
Tim Pritlove
Die Standardkerze in dem Moment waren. Mhm. Okay. Das heißt, in dem Moment wusste man wir schauen in die richtige Richtung,undKönnen auch das, was da an Daten kommt, in eine korrekte Wahrnehmung übersetzen. Also wir wir wir wissen, was quasi diese ganzen Messergebnisse der einzelnen Instrumente tatsächlich bedeuten.Abzüglich einer gewissen Schwankung, die sich dann wahrscheinlich auch nicht weiter ja, die sich einfach nicht rausrechnen lässt, die man dann einfach so hinnehmen muss.Damit sind wir im Prinzip ja bei dem Instrument von.Kleiner Satellit und er hat ja eigentlich nur ein einziges Instrument eben diesen Helligkeitssensor, aber da liegt die ganze Konzentration drauf, weil das ist ja die Information, die man haben will. Das heißt, das Ding ist im Wesentlichen einfach ein Auge, was,sehr genau die Helligkeit eines beliebigen Sterns wahrnehmen kann. Wie setzt man das jetzt,Also was was unterscheidet dann jetzt auch dieses Teleskop von von anderen Weltraumteleskopen, also ist das dann,Haben ja auch eine Öffnung und nehmen die anderen nehmen ja auch Licht auf. Sehr viel sensitiver nehme ich an.
Christopher Broeg
Jein, also Sensitivität ist für uns nicht so wichtig. Für uns ist wichtig die Stabilität. Also wir wollten ja diese 20 parts familien messen,dass er keine absolute Größe, eine relative Größe. Das heißt, was immer wir messen, muss konstant sein auf 20 Millionenstelteile.Das heißt, der Fokus liegt auf,alle Größen müssen sehr stabil sein, das heißt die Ausleseelektronik, irgendwann müssen ja die Elec, also die Photonen fallen ja auf die Silizium,und erzeugen dort Elektronen, werden dort gefangen und irgendwann werden die dann ausgelesen und von einem analog Digitalkonverter in irgendwelche Einheiten umgewandelt.Und natürlich, wenn ich die Spannung an diesem ADC ändere, ändere ich das Signal. Also die Spannung muss,Sibias Spannungen, sagt man denen, müssen extremst konstant gehalten werden auf Mikrovolt,und ebenso müssen sämtliche Temperaturen auch vom Teleskop konstant gehalten werden, damit sich das Telekop nicht verzieht während der Messung,Auch der Spiegel darf sie nicht ausdehnen und schrumpfen, weil dann wird er die effektive,Lichtsammelfläche sich ändern. Also hat man dann so ein Zerotourglas, das ist ein Glas, was ich fast nicht ausdehnt bei Temperaturänderung.Und und zusätzlich wird alles aktiv kontrolliert. Also das Teleskop ist immer auf minus zehn Grad aktiv kontrolliert, stabil und der Detektor, der Chip ist auf minus 45 Grad auf ein Milligrad. Mili Calvin genau.
Tim Pritlove
Für einen Milli Calvin genau.
Christopher Broeg
muss es die Temperatur halten und die Ausleseelektronik ist auch auf einen Militävin stabil.
Tim Pritlove
Wie kann man denn das regeln, wenn das eine passive Kühlung ist? Man hat ja eigentlich gar keinen Einfluss. Sonnenstrahlen kommen an oder kommen nicht an.
Christopher Broeg
Man macht das eben so, dass man erstmals nimmt man guten Orbit, das heißt wir haben wir wir wir das Raumschiff dreht sich immer, es nennt sich Nah-Dialog, das heißt, es schaut immer mit den mit den Metallplatten, die die,Strahlung abgeben immer von der Erde weg. Also wie man's Weltall also wenn's um die aller drei dreht sich's immer mit, dass immer wegschaut. Außerdem,Das wollte ich vorher noch sagen zur Standardplattform, also die Standardplattform hat nämlich einige Modifikation. Die eine Modifikation ist eben, dass die Solarzellen so angeordnet sind, dass sie Schatten machen für unsere,Radiatoren.
Tim Pritlove
Mhm. Ist da nie Sonne drauf fallen kann. Mhm.
Christopher Broeg
Da nie Sonne drauf fallen kann. Gibt's extra so ein Sonnenschild und die ganzen Solarzellen gehen auch immer so halb rundum, dass die Sonne alle Richtungen, in denen wir laut Spezifikationen hinschauen dürfen zu einem gewissen Zeit des Jahres,scheint die Sonne halt nie dorthin, wo sie nicht hinscheinen soll. Und auch die Erde, die Infrarotstrahlung der warmen Erde kommt so gut wie nicht auf dieser auf diese abstrahlenden Platten.Schon mal relativ stabil, da waren sie nicht stabil genug. Und was man dann macht, man man kühlt passiv und heizt auf eine gewisse Temperatur. Also sagen wir halt die CCD, wenn wir die nicht heizen würden, würde die ungefähr minus 140 Grad kalt werden.Heizen sie dann auf - 45 mit einem PRD Controller, also,klassischer Regelungstechnik, er war an ausschaltet mit Pulsmodulation das Verfahren wie lange die Heizzyklen sind.
Tim Pritlove
Verstehe. Also man hat einfach rein baulich machen wir es erstmal so kalt wie's geht. Damit,das nicht stören kann und nicht dazwischen kommt und dann hat man wiederum die Möglichkeit von der anderen Seite zu kommen und sagen, jetzt machen wir's fahren wir das Ding einfach genau auf die Temperatur, die wir brauchen.Pfiffig.
Christopher Broeg
Ja, macht man aber Standardmäßig so. Schwierigkeit bei uns eben ist es ja genau sein muss. Also wenn ich jetzt einen Telekommunikationssatellitenpower mache ich's eigentlich genauso,Da geht's mehr darum, dass du nicht überhitzt und und dass er innerhalb seinen zehn Grad Arbeitsbereich ist und bei uns ist halt nicht zehn Grad, sondern Mili Kevin. Ist halt ein bisschen schwieriger, aber das Prinzip ist gleich.
Tim Pritlove
So, das heißt,Das Teleskop in Place schaut an die richtige Stelle, hat die richtige Temperatur. Man weiß, was die ganzen Instrumente, wie man die Daten zu interpretieren hat.Worauf wird denn jetzt eigentlich geguckt? Wo kommen denn die Objekte jetzt her?Wir hatten ja vorhin schon gesagt, es geht ja hier nicht dadrum, neue Exo-Planeten zu finden, sondern es geht ja darum, bestehende genauer zu untersuchen. Welche sind das? Wie viele sind das und und und wo kommen die her und warum.
Christopher Broeg
Na gut, als als allererstes haben wir natürlich bekannte Sterne angeschaut, die schon von anderen Teleskopen beobachtet worden sind, einfach mal um zu vergleichen.
Tim Pritlove
Auf die selben Ergebnisse kommt.
Christopher Broeg
Und noch vorher haben wir irgendwelche Standardkerzen angeschaut, die einfach wohl davon ausgehen, dass sie maximal konstant sind, weil Sterne sind ja nicht immer konstant, manche mehr, mal weniger unsere Sonne ist super konstant für einen Stern,Um einfach mal zu verifizieren noch in im Teil des als Teil der Inbetriebnahme, dass wir unsere zwanzig PPM erreichen.Nachdem wir das dann geschafft hatten, haben wir dann angefangen im wissenschaftliche Ziele. Das war dann im April es geht schon schon von Weihnachten bis,am 25. März hatten wir offizielle Commissioning erfolgreich.Und dann ging's im April los mit den nominalen Wissenschaft. Da gibt's eben ein Science-Team. Also wir haben 80 Prozent der Zeit für die das Konzertum, dass das gebaut hat,20 Prozent der Zeit ist ESA-Zeit, wo sie Eser auf jährliche,AO heißt das, announcement of Opportunity. wo man eben Anträge einreichen kann. Dann gibt's einen Komitee, was halt sagt, das ist ein gutes Wissenschaft, kriegst du unsere Stunden Beratungszeit.Und bei unserem Science-Team,Die Ziele kommen von unterschiedlichen Quellen. Entweder sind eben mit Tradialgeschwindigkeitsmethode am Boden wirklich Planeten gefunden worden und man,Vermutet von der Konfiguration her, das sind Transit machen könnte, dann weiß man wann und dann sagt man halt okay in vier Wochen drei Uhr nachmittags ist der Transit. Wenn er denn stattfindet und dann gibt man das ein.
Tim Pritlove
Also Transitz ist, wenn der Exoplanet vor der vor dem Stern vorbei zieht.
Christopher Broeg
Genau, wenn er vor dem Stand vorbei zieht, aber man weiß, weil in diesem Fall genau wann, weil man ja die Geometrie kennt,Sagt man halt, okay, der Transit dauert zum Beispiel drei Stunden. Wir fangen vielleicht sechs Stunden vorher an und sechs Stunden danach und gibt man eben die zehn5 Stunden als Beobachtungsrequist ins mit dem System programmiert halt, wo man's eingeben kann.ist das ja periodisch. Sagen wir alle 30 Tage oder was immer die Umlaufzeit um den Stern ist, gibt man halt ein, kannst die in alle 30 Tage beobachten und das unser Planungssystem sucht sich dann halt immer für,für die nächste Woche waren einmal pro Woche ein Planungszyklus sucht sich sozusagen wieder die nächsten,Sieben Tage lang die Beobachtungen zusammen möglichst wenig Leerlauf dazwischen zu haben und die möglichst interessanten Objekte nach einem Prioritätenliste eben,einzuplanen.
Tim Pritlove
Aber wenn wenn jetzt der Satellit selbst einmal um die Erde was haben wir gesagt, anderthalb Stunden braucht, dann kann er ja nicht permanent auf ein ein Objekt schauen.
Christopher Broeg
Doch schon. Also je nachdem woher wo das Objekt ist. Also wir haben eben diesen Orbit-Zoo gewählt. Sonnensynchron,So vorstellen, wir fliegen über der Tag-Nacht-Grenze, also rechts sagen wir mal, wenn's auf der einen Seite die Sonne die Erde anscheint, auf der anderen Seite ist dunkel fliegen wir im Idealfall genau über diesem.
Tim Pritlove
Graubereich sozusagen, in der Dämmer.
Christopher Broeg
Bereich. Und wir und wir schauen von der Sonne weg. Aber wir können sowieso nicht zur Sonne schauen. Also wir können so so hundertachtzig Grad.
Tim Pritlove
Zur Seite sozusagen.
Christopher Broeg
Von der Sonne weg. Genau man schaut zur Seite und und in diesem Feld diese Konus mit 60 Grad Halbwinkel können wir alles angucken.
Tim Pritlove
Ah ja okay, verstehe.
Christopher Broeg
Dann kommt schon je nachdem also wenn ihr genau von der Sonne wegkommt könnt ihr ununterbrochen beobachten,mit einer kleinen Problematik kann ich noch kurz drauf eingehen, aber wenn man ein bisschen mehr sagen wir am Rand der Beobachtungszone schaut, dann kommt dann schon die Erde immer wieder,dazwischen. Dann gibt's halt Unterbrechungen. Also wir haben halt manche Beobachtungen bis zu 50 Prozent unterbrochen, erlauben wir,aber es gibt auch Beobachtungen wo es quasi keine Unterbrechung gibt. Es gibt nur eine Sache, wo die wir nicht umhin können. Das ist die sogenannte South Atlantic Anomely.Das heißt, dass wir alle.Ja immer zwei, drei Umläufe sind ohne, dann kommen wieder zwei, drei Umläufe mit und dann wieder zwei, drei Umläufe ohne, da fliegen wir doch ein Gebiet über dem Südatlantik, deswegen heißt's auch Südatlantik Anomalie.Van Ellen Strahlungsgürtel so tief runterkommen, dass wir doch in einem Protonen,Fliegen und dann zieht man einfach nichts mehr offen. das sieht dann aus wie eine Frau wie ein alter Fernseher, der rauscht. Weil wir so viele Teilchen Einschläge aufm Detektor haben.
Tim Pritlove
So Brasilien und eben Südatlantik so diese diese Gegend ist das.
Christopher Broeg
Da kommen einfach diese Besteuerungsgürtel, die normal so auf tausend, tausend1zweihundert Kilometer Höhe sind, kommen die da drunter bis auf 5, 600 Kilometer und da fliegt man halt voll durch.
Tim Pritlove
Da kann man halt nicht die ganze Zeit zuschauen. Okay, aber ansonsten hat man dann doch einen relativ guten Weg. Das heißt, es gibt so high quality Tages, wo man sozusagen die ganze Zeit hinschauen kann und das hängt natürlich dann auch mal von der Jahreszeit ab, weil je nachdem wie weit man denn jetzt sozusagen mit der Erde um diese.Die Sonne herum ist, hat man einen anderen Blickwinkel und dann sagt man sich.
Christopher Broeg
Extrem gesagt, wenn der Stern hinter der Sonne gerade steht, können wir ihn natürlich nicht beobachten. Mhm. sondern alles, was so dem Drittel des Himmels und wir können typischerweise eine Bergsu drei bis maximal vier Monate lang beobachten.
Tim Pritlove
Genau in die andere Richtung ist, wenn's sozusagen in Richtung also von der Sonne weg ist, dann kann man sozusagen auch nur die Hälfte der Zeit beobachten, weil man ja eigentlich da die ganze Zeit.
Christopher Broeg
Ist ja unser Arbeit ist ja immer so, dass er dass er von der Erde weggeht. Also eigentlich,können wir in dem Bereich, wo wir beobachten können, es ist so bei der Ecliptik plus - 60 Grad können wir eigentlich dann drei Monate lang beobachten.Vom Beobachtungsbereich ist desto mehr haben wir diese,er Unterbrechungen, weil die Erde quasi ins Blickfeld kommt. was wir nicht können, ist die galaktischen Pole. Einfach weil wir nicht senkrecht uns wir können das Raumschiff nicht senkrecht zur Sonne drehen und zu den galaktischen Polen schauen.
Tim Pritlove
Und wie lange dauert das, wenn man jetzt ein neues Ziel in Angriff nimmt? Wie schnell kann man sich da so ausrichten? Ist das mal so eben oder.
Christopher Broeg
Geht schnell. Es dauert so eine Minute zwei dieser Slow sagt man dem, also das ist,und wir haben glaube ich jetzt meistens so vom Planungssystem so acht Minuten für so einen Wechsel, also wenn man,Instrumente ist dann aus oder ist es im Stand bye, nimmt dann immer Daten, die sie aber löscht sozusagen mit der Detektor immer die gleiche Temperatur hat und dann fährt das Raumschiff dreht sich mit den Schwungrädern auf die neue Position,und mit einem.Zeitlich vorkoordinierten Befehle. Wir haben sagen wir mal TimeTech Commander das Raumschiff hat so eine Mission Timeline heißt die, also eine Zeitlinie, wo alle,Telekommandos quasi hochgeladen werden mit einer Uhrzeit versehen und immer bei der Uhrzeit wird es ausgelöst und dann wenn halt dann dann wird halt der Kommando ausgelöst,Instrument beginne die Messung,fängt das Instrument an zu messen und was wir wir messen nicht nur die Bilder, sondern wir bestimmen auch genau wo der Stern ist,das Laufen dem Raumschiff, damit's noch Feinjustierung der Position machen kann. Aber das das sind dann schon wissenschaftlich nutzbare Bilder.Es wird einfach die ganze Zeit nachgetrackt, weil sonst gibt's eben thermoelastische Veränderungen.Würde der Stern sonst so ein, zwei Pixel sich vielleicht bewegen auf dem Detect und das will man nicht. Deswegen schickt man das immer dem Raumschiff und das Raumschiff berücksichtigt dann das und behält den Stern eigentlich immer am gleichen Pixel.
Tim Pritlove
So und jetzt ist es aber so, dass dass der Blick, den man da ins All wirft, bewusst und scharf ist. Was hat es damit auf sich.
Christopher Broeg
Sind eigentlich zwei Gründe. Der der eine Grund ist ganz banal. Wenn man 30 Zentimeter Teleskop, das ist ja sehr winzig kleines, aber wir wollen eben auch sehr helle Sterne beobachten. Also wenn wir jetzt zum Beispiel,Alpha Zantauri anschauen wollen,dann können wir dann nur irgendwie sieben Millisekunden oder so belichten bevor bevor der CCD schon satoriert ist,überbelichtet ist. das ist jetzt ein Extrembeispiel, weil er so helle Sterne gibt's nicht viel und dafür sind wir auch nicht designt worden, aber,Unsere hellsten Sterne sind sechste Größe und wenn wir das auf einen Punkt fokussieren würden, auf den Detektor könnten wir die nicht beobachten. Allein schon deswegen muss man so viele,Pixel verteilen, was uns viel zu viel Licht da ist. Wir können nicht so schnell belichten. Also wir haben einen CCD, das einmal auszulesen, dauert eine Sekunde. Selbst wenn wir nur das Fenster auslesen, was uns interessiert,Also wer die kürzeste Belichtungszeit, die wir machen können, ohne was zu verlieren, wenn wir warten während es ausliest, ist eine Sekunde.Also verteilt man's in unserem Falle von für 1000 Pixel. Das kann man tausendmal länger belichten, bevor die Überbelichtung.
Tim Pritlove
Pixel hatte in der Sensor.
Christopher Broeg
Hat eine Million Pixels und einen tausendmal tausend. Aber wir verwenden eigentlich nur zweihundert mal zweihundert,regelmäßig, also die wir runterladen, weil der Stern hat dann Durchmesser von zwanzig Radius oder doch mal zum Beispiel überlegen. Radius, also Durchmesser von vierzig Pixeln ist so ein Block, ein bisschen Dreiecksförmig, passend zu Keops,nicht wirklich gewollt,Würde eigentlich ein viel kleinerer Ausschnitt reichen, aber um auch den ganzen Hintergrund bestimmen zu können. Hintergrundniveau der, den man hier abziehen muss. machen wir immer zweihundert mal zweihundert.
Tim Pritlove
Sozusagen als Referenz auch wiederum für den Dunkelstrom.
Christopher Broeg
Nur dunkel Strom, auch Streulicht und andere Sterne, die da im Hintergrund sind.
Tim Pritlove
Mhm. Okay. Das heißt, so muss man sich das vorstellen. Man man visiert im wahrsten Sinne des Wortes jetzt den Stern an, um den es geht,hat einen riesigen Sensor eigentlich und nutzt davon, na ja so fünf bis zehn Prozent der Fläche ungefährUm den eigentlichen Stellen zu machen, schaut aber bewusst unscharf hin, weil es geht ja nicht darum, ein Foto zu machen. Man will ja nur die Helligkeit haben, ne und nutzt damit eben sehr viele mehr Pixel aus und verhindert damit eine Überbelichtung, aber man kriegt ja in der Summe dann eben quasi,immer noch dieselbe Information und die dann eben auch sehr viel genauer.
Christopher Broeg
Genau. Das war ein Grund jetzt habe gesagt, ich habe zwei Gründe. Der zweite Grund ist, dass ja jedes Pixel hat eine andere Empfindlichkeit,So typischerweise bei sagt man so drei Prozent von Pixel to Pixel unterscheidet sich und drei Prozent klingt nicht viel aber wenn man auf ein Hundertstelprozent genau oder ein Tausendstel Prozent genau messen möchte, dann ist es natürlich ein Problem. Drei Prozent,Wenn man sich jetzt vorstellt will, das Licht ist immer nur am selben Pixel wär's kein Problem, aber weil das Raumschiff halt immer ein bisschen rum eiert ähm,wird immer sich's auf mehrere Pixeln und dann ist wär's eine Katastrophe. Man kann das jetzt kalibrieren. Also wir haben das auf ein Zehntelprozent kalibriert im Labor dieses sogenannte Flatfield,Also quasi die die Empfindlichkeitslandkarte des Chips.
Tim Pritlove
Die eine statische Größe ist, also man weiß oder ändert die Pixel dann auch noch.
Christopher Broeg
Gehen jetzt davon aus, dass sie sich nicht ändern, aber das weiß keiner genau auf dem Level von zwanzig PPM. Aber es scheint schon wahrscheinlich so zu sein, dass es sich nicht ändern. Alles was im Labor, weil oben können wir's nicht mehr so genau messen,und im Labor haben wir es eben auf dem Zehntel Prozent genau gemessen und das benutzen wir jetzt als Kalibrationsgröße. Aber wir sind Gott sei Dank nicht so stark davon abhängig, weil dadurch, dass wir das eben nicht, dass wir nicht nur einen Pixel messen, sondern eben tausend.Mittelt sich das ja statistisch ein bisschen raus und man kann eben dann rein mathematisch oder reicht es selbst das Zehntelprozent nicht, aber wenn wir eben tausendmal ein Zehntel-Prozent haben, dann sind wir schon mal,irgendwie Faktor dreißig, vierzig besser, doch Wurzel aus der Anzahl der Punkte. und so schafft man eben diese zwanzig BPM.Sagen wir so, ist eine Möglichkeit, dass es zu schaffen gibt, viele Möglichkeiten.Aber andere machen einfach eine wahnsinnig gute Lagerregelung. Kepler zum Beispiel, dass Millionen Sterne angeschaut hat, wo jeder Stern wirklich nur auf einem Pixel ist muss dann die Lageregelung halt so gut sein, dass das auch wirklich auf diesem einen Pixel bleibt,dann sogar im Pixel gibt's unterschiedlich, wie man sagt, auch Intrapixler sind die Sensitivitäten unterschiedlich.
Tim Pritlove
Echt? Mhm.
Christopher Broeg
Muss man dann auch charakterisieren.
Tim Pritlove
Krass.Okay, jetzt ist die Mission ja schon eine Weile unterwegs und die Kalibrationsphasen sind ging schon lange zurück. Das Ding ist in Betrieb und wird benutzt und von allen möglichen Wissenschaftlern sind dann quasi,Ziele eingereicht worden. So hier das wollen wir uns gerne mal anschauen. Was,Hat denn die Mission da jetzt bisher geleistet? Also wie viele Sterne sind da schon untersucht worden und was,Was genau kann man damit jetzt eigentlich herausfinden und was ist bisher vielleicht an interessanten Entdeckungen auch schon gemacht worden?
Christopher Broeg
Mhm. Also wir haben wir hatten schon im Frühjahr hatten wir unseren 1tausendste Beobachtung,Also das kann man sich ungefähr Beobachtungen dauern eben immer zwischen paar Stunden. Kürzeste Beobachtung, wie wir machen können, ist ein Orbit, also,anderthalb Stunden,Es gibt auch mal Beobachtungen, die ja 48 oder 72 Stunden lang sind oder wir haben auch einmal eine Woche und noch mal drei Tage beobachtet. Wir können nicht länger als eine Woche am Stück beobachten.Aber in diesem in dieser Bandbreite bewegt sich das und wir haben so ungefähr 300 Ziele angeschaut,Manche davon sehr häufig, manche nur einmal, also es ist ganz unterschiedlich hier nach wenn man jetzt nur was bestätigen möchte, nur eine Transitmessung kann sein, dass eine einzige Messung reicht,Wir sind typischerweise mit einer einzigen Messung so ungefähr dreimal genauer als Test. Also diese amerikanische Satellit,der für uns eigentlich ein großer Gewinn ist, weil er was ähnliches und doch was ganz was anderes macht als wir. Also der schaut auch helle Sterne an,versucht den ganzen Himmel abzugrasen, hat aber immer nur 27 Tage pro Stern und dann ist er wieder weiter beim nächsten,Können halt immer noch mal genauer hinschauen. Jederzeit wann wir Lust haben und mehrere Messungen machen und das sehr eine sehr gute ergänzt sich sehr gut.Ja, zu den konkreten Ergebnissen, also ist natürlich jetzt der persönliche,Geschmackssache. Also ich fand's sehr spannend. Also ganz am Anfang war einfach mal spannend, da hatten wir den,198 der ein sehr heißer hot Chupetor ist, das heißt quasi ein großer Gasplanet,wo man eben nicht nur den Transit messen kann, sondern auch den Eclipse. Also es muss sich das so vorstellen. Franzi deckt der Planet den Stern ab. Und bei der Clips deckt der Stern den Planet ab.Weil der Planet ja Licht zum einen reflektiert und zum anderen auch thermisch ein bisschen aussendet,sieht man das, wenn man sehr genau hinschaut, denn in diesem Fall sind das 84 PPM ein sehr großer Planet,und man kann dann eben daraus schließen, dass er wie die Atmosphäre aussieht, das ist hauptsächlich reflektiert das Licht,Für uns aber auch das Schöne, dass wir das auf vier PPM genau messen konnten, diesen Dip. Also das war einfach mal eine Leistungsbeweis von.Man so genau hinschauen kann und die Atmosphären Leute, die können dann halt dort Albedo Rückschlüsse ziehen, welche bestimmte Zusammensetzung der Atmosphäre ausschließen und so weiter.
Tim Pritlove
Mhm. Weil man einfach weiß, okay so und so viel Reflexionspotenzial hat diese Atmosphäre und das gibt Rückschlüsse auf entweder die Beschaffenheit oder man kann's besser.
Christopher Broeg
Gibt's Wolken, gibt's keine Wolken, zum Beispiel gibt's Stau und Atmosphäre und so. Und dann das etwas Neuer war, es ähm,I eins sieben acht das ist einfach so eine Nummer wie bei all diesen Sachen und da haben wir eben.Zuerst war die Idee, es gibt einen Co-Orbitle-Planeten, also das heißt sind ja alle Planeten, die Erde ist auf ihrer Umlaufbahn allein,nicht noch eine Erde mit einem Jahr Umlaufzeit, die auf der anderen Seite der Sonne um die Sonne kreist. Und es gab in in den Daten, ich glaube in Keplerdaten vor allem, gab's eben ein Signal, aber,dass dort vielleicht ein so ein ist, also ein das wäre der erste und hat ihm eine Gruppe von unseren Wissenschaftlern halt da genauer hingeschaut,Genauer gemessen und am Ende kam heraus, ist kein weil es wäre natürlich höchst spannend. Kann sowas überhaupt entstehen? Zwei Planeten, die sich die eine Umlaufbahn teilen.Aber es sind Resonanzen, das heißt wir haben dann dort sechs Planeten total gefunden,also mindestens zwei waren davon glaube ich vorher nicht bekannt und die sind alle in Resonanz, das heißt wenn der eine Planet zum Beispiel vier Umläufe macht, macht der andere drei Umläufe und eine 16 Umläufe macht, macht der andere fünf, so dass dann immer zum gleichen Zeitpunkt zwei Planeten,oder auch in der in der Hälfte der Zeit, deswegen sah es so aus, als wäre man in der Hälfte der Zeit da noch ein Planet ist.Da hat man dann eben ein ein Planetensystem gefunden von sechs Planeten, die zwar alle sehr nah am Stern sind, also ich glaube so Ängste hat ein paar Tage Umlaufzeit und der weiteste,paar zehn Tage, also viel alles viel geschrumpfter als unser Sonnensystem. Aber fünf von diesen sechs Planeten nenne ich mich recht erinnere, sind alle in Resonanz.Und das hat extreme,Einschränkungen auf wie die entstanden sein können, weil die kleinste Störung würde diese Resonanz zerstören. Das heißt ist für die von einem Planeten Entstehungsperspektive extrem interessant.Hinzu kommt noch, dass es recht helles System ist, was er so gut untersuchen kann.Ja und dann gab's noch also das Griechisch zwei Lupi im Lupus-Sternbild. Das ein Sternekammer quasi mit einem bloßen Auge sehen, weil er so fünfte größer hell ist fünf Komma irgendwas.
Tim Pritlove
Also von der Erde aus, wenn man nach oben schaut. Ja. Mhm.
Christopher Broeg
Ich das wahrscheinlich nicht mehr kann, aber ich sage jetzt mal ein 15-jähriger mit guten Augen, in einer klaren Nacht kann das sehen, den Stern.
Tim Pritlove
Mhm. Und dann von meinem guten Teleskop sowieso.
Christopher Broeg
Sowieso auch mit jedem billigsten Teleskop, kann man das sehen? Und dort kann man sehen, einen 100 Tage Umlaufzeitplaneten entdeckt.Und das ist eben schwierig, also,Erde hat ein Jahr, also 365 Tage, aber da macht natürlich dann auch, wenn wir jetzt Außerirdische wären und uns selbst beobachten würden, hat man jedes Jahr eine Chancen-Transe zu sehen.Und das berücksichtigt noch nicht, dass die Wahrscheinlichkeit, dass die Geometrie richtig ist, auch immer abnimmt, je weiter man weg ist,wahnsinnig schwer zu finden, aber eigentlich sind das die interessantesten, weil wenn wir von einem erdännlichen Planeten sprechen, denkt man ja so, ein Jahr geht ein Jahr und ein Jahr geht nicht 20 Tage,ist dann auch viel zu heiß, wenn's ein Jahr zwanzig Tage geht, wenn's ein sonnenähnlicher Stern ist und das ist eben einer, der der 100 Tage Umlaufzeit hat und der wurde da.Entdeckt einfach auf, ob's flexibel ist und dann war zufällig in einem Window waren nicht erwartet da Transit und dann kann man halt sich überlegen, wann könnte der wieder vor auftreten?Haben sie neben gefunden. Aber beim TIO 1sieben acht war's auch so, dass man zuerst fünf Planeten hatte und dann hat man gesagt, jetzt machen die so eine schöne Resonanzkette.Da fehlt noch einer. Genau hier in der Mitte. Lass uns doch mal gucken. Genau an dem Tag, wann der und dann war da einer.Das ist halt das Schöne bei einfach eingeben kann. Ich möchte an dem Tag beobachten um die Uhrzeit und es wäre so eine schöne Resonanz. Fehlt nur noch ein Planet.Wäre doch schön, wenn er eine ist und dann haben sie hingeschaut und hat geklappt. Also.
Tim Pritlove
Also ich könnte mir vorstellen, die Nachfrage nach Beobachtungszeit ist nachgefragt.
Christopher Broeg
Ja also im im Science Team, wo die eben elf Länder drin sind und da gibt's natürlich ständig, möchte nicht sagen Kämpfe, aber,Also der Science Team Chair, die Diekelot muss immer wieder sagen, beschränkt euch aufs Wesentliche, also es nützt nichts zwölf Projekte anzufangen und keins fertig zu machen, sondern machen schön der Reihe nach, dass man auch genügend Beobachtungen kriegt.,Aber lustigerweise auf Eser Seite mit den 20 Prozent ist eher wenig Interesse. Also man würde ja erwarten, dass es völlig over subscribed ist.
Tim Pritlove
Ja, würde ich erwarten.
Christopher Broeg
Das ist es nicht,wir wissen nicht genau warum. Ein Grund ist sicher, dass zeitgleich die Testmission gestartet ist und die Testdaten werden alle nach sechs Monaten öffentlich verfügbar.Und man kann dann gibt dann hunderttausende von Lichtkurven die man angucken kann quasi gratis ohne einen Antrag zu schreiben,und bei ist es die Schwelle halt ein bisschen höher, muss ein wissenschaftliche Begründung, Antrag schreiben,und so weiter. Das ist sicher ein Grund weiter Grund könnte sein, das wollen wir jetzt für die Missionserweiterung verbessern,wir natürlich als Konsortium mit unseren 80% Beobachtungszeit,momentan so geregelt, dass man wenn wir was beobachten, es ist blockiert. Also dann kann man nicht weiter kein Antrag auf den selben Stern, weil es macht irgendwie keinen Sinn. Wenn zwei Leute das Gleiche anschauen und es quasi vergeudete Beobachtungszeit,aber es kann sein, dass dadurch, dass wir natürlich die interessantesten Objekte anschauen,dass dann zu viele versuchen zu schauen, ist dann schon blockiert. Deswegen wollen wir jetzt im für die Erweiterung haben wir gesagt, wir reduzieren dramatisch unsere reservierte Zielliste.Um mehr Möglichkeiten zu geben, Leuten das zu beobachten, was sie beobachten wollen. Also wir wissen nicht, ob das ein Grund ist, aber es könnte ein Grund sein, dass vielleicht zu viel blockiert ist.
Tim Pritlove
Interessant. Obwohl ja, ich meine, gut Tes Test veröffentlicht alle Daten nach sechs Monaten, das ist dann hier nicht der Fall.
Christopher Broeg
Veröffentlichen alle Daten nach einem Jahr nach der letzten Beobachtung oder anderthalb Jahre nach der ersten Beobachtung.
Tim Pritlove
Und das macht man deshalb nur so spät, weil.
Christopher Broeg
Ja, weil die Leute, die sich die ganze Mühe gemacht haben, mit muss ja teilweise auch noch Bodennachver Verfolgung initiieren, damit man auch eine Chance hat, dann das zu veröffentlichen, bevor es jemand anders veröffentlicht. Das ist schon relativ viel Aufwand und man muss sich vorstellen,Man muss ja genau wissen, wann man hinguckt und das manchmal nicht so leicht, weil diese Fermeriden, sagen wir dem Fermariots,Wann genau der Planet in Transit macht, weiß man vielleicht irgendwann mal, aber über die Monate und Jahre wird's immer ungenauer und man muss dann irgendwie versuchen zu erraten oder zu berechnen oder nochmal einen Boden gestützte Radialgeschwindigkeitsmessung zu machen, um noch mal,nicht mit Keyboards auf jeden sterben. Drei Wochen schauen, um einen Transit zu finden und ist mit relativ viel Aufwand verbunden.Das dann auch ordentlich zu machen und nicht vorbeizuwerfen. Ich kann mich jetzt eigentlich nur ein oder zwei Mal erinnern, wo sie wirklich dann falsch waren und wir haben verpasst haben den Transit.Und einfach um die Leute, die die Arbeit auch auch zu zu.
Tim Pritlove
Honorieren, dass man da sozusagen auch die Möglichkeit hat, was Wissenschaftliches zu publizieren, weil das.
Christopher Broeg
Viele Doktoranden, die das machen.
Tim Pritlove
Das ist ja ein bisschen auch der Lohn der Arbeit in der in der Wissenschaft. Aber am Ende landen die Daten alle öffentlich.
Christopher Broeg
Am Ende landen die alle öffentlich, ja.
Tim Pritlove
Mhm. So,Dezember neunzehn, jetzt haben wir Ende einundzwanzig, zwei Jahre sind rum und ich glaube, die Regelzeit der Mission liegt bei dreieinhalb Jahren. ist dann schon alles alle.Treibstoff oder lässt sich noch was erweitern.
Christopher Broeg
Also technisch gesehen können wir sehr lange beobachten. Also wir haben wir brauchen keinen Treibstoff. Also wir brauchen Treibstoff nur für Kollisionsvermeidung.Um am Ende sauber sozusagen den Orbit zu verlassen und nicht selbst als Weltraumschrott zu enden. ansonsten brauchen wir überhaupt gar kein Consumerbus, wie sagt man denn, auf auf Deutsch.
Tim Pritlove
Verbrauchsmaterialien. Mhm.
Christopher Broeg
weil wir nur Strom brauchen und.
Tim Pritlove
Solange die Technik funktioniert, funktioniert.
Christopher Broeg
Dann ist die Frage, funktioniert sie noch oder nicht? Das es kann ja immer mal sein, dass ein Schwungrad ausfällt. Wenn dann das Zweite ausfällt, dann sind wir nicht mehr fähig. Wahrscheinlich gute Ausrichtung zu machen.
Tim Pritlove
Aber noch gehen alle.
Christopher Broeg
Noch geht alles. und was unsere Hauptlimitierende Faktor sein wird. Also wenn nicht irgendein Elektronikbauteil auch hochenergetisch Teilchen getrocknet einfach kaputt ist,ist der Detektor. Der Tektor,ist ein normaler CCD-Detektor und der hat einen optimiert auf sehr sehr geringen Dunkelstrom und sehr hohe konstant von der von von der Sensitivität her,aber er wird ständig von Teilchen bombardiert, insbesondere wenn wir dieses Haushalt lebendiger Nomely durchqueren und wir haben ungefähr einhundert,neue, sogenannte heiße Pixel, Hotpixel pro Tag. Ein ein heißes Pixel heißt einfach, dass es,nicht quasi keinen Dunkelstrom produziert, sondern ein normales Pixel produziert,In einer Minute vielleicht ein Countdown Dunkelstrom und man kann 65.000 Counts Licht sammeln pro Pixel, sondern die produzieren dann halt plötzlich,nicht unterschiedlich von von eins bis zehntausend pro Sekunde oder so. Das sind einfach dann heiß. Wir sagen den Hot Pixels.Ja, warum weiß man nicht so ganz genau, man muss sich so vorstellen, das ist ja ein ist ein wird das beschädigt. Das ist quasi ein monochristalines Silizium.Die Teilchen, die Protonen zum Beispiel zerstören das Kristallgitter. Und machen dort Fehlerfehlstellen,im im Kristall und dann ist der Abstand zum Leitungsband, der wo diesen Dunkelströmerzeug plötzlich viel kleiner und dann gibt's viel mehr Dunkelstrom. Aber es gibt verschiedene Mechanismen. Im Wesentlichen muss ich vorstellen, sind Beschädigungen der Kristallstruktur.Bombardierung mit geladenen Teichen.
Tim Pritlove
Diesen kurzfristigen Blitz erzeugen und langfristig unter Umständen die Qualität des CCD mindern. Genau.
Christopher Broeg
Es gibt auch diese kurzfristigen Blitze, die sehen wir auch immer. Das immer wieder mal so ein kosmisches Ding ist. Aber meistens ist danach alles wieder gut. Manchmal sind danach nicht alles gut, sondern das Pixel ist dann plötzlich hot geworden und hat plötzlich eben viel höhere Dunkelstrom.Dauerhaft. Manche verschwinden auch wieder. Also es ist wir haben zum Beispiel pro Tag werden 200 neue erzeugt und hundert verschwinden. Aber im Schnitt sind dann 100 neue da, die bleiben.
Tim Pritlove
Das heißt, da ist dann der Dunkelstrom anders. Man muss das quasi anders kalibrieren. Genau. Anders.
Christopher Broeg
Genau. Also wir machen deswegen jede Woche eine Messung, die nur dazu da ist, den Dunkelstrom zu messen und die neuen heißen Pixel zu charakterisieren.Noch muss man die nicht korrigieren, aber wir arbeiten jetzt dran, dass man die dann immer abzieht aber man muss eben aufpassen und man durchs Abziehen nicht mehr,Rauschen hineinbringt als durchs Nicht-Abziehen, weil wenn man einfach nur zählt und wenn das heiße Pixel immer perfekt konstant ist, dann stört's eigentlich nicht,Aber wenn's am Rand ist, wir zählen normalerweise einen gewissen Kreis, alles Licht zum Stern, wenn das Pixel immer rein- und raushüpft zum Beispiel. Ist natürlich schlecht,limitierende Faktor. Also wir erwarten, dass wir dass wir jetzt haben wir sechs Prozent heiße Pixel. Am Anfang der Mission hatten wir null,und wir erwarten, dass wir 2028 haben wir jetzt gerechnet ungefähr 30, 40 Prozent heiße Pixel haben.
Tim Pritlove
Die sind dann nicht automatisch unbenutzbar. Man muss nur anders mit ihnen umgehen.
Christopher Broeg
Nein nein also wir haben auch Simulationen gemacht weil wir jetzt eben überlegen wollen wir die Mission verlängern. Die macht ein ein Review aller Mission immer im Drei-Jahrest-Turnus für Verlängerung mögliche Verlängerungen. Da sind wir jetzt auch das erste Mal dabei,Würden wir dann von Ende September um zwei weitere Jahre verlängern, so weil der Turnus so fällt,Gerade berechnet, dass wir erwarten in den nächsten drei oder auch sechs Jahren, auch schon für übernächste Verlängerung,Ja, eigentlich nur zehn Prozent Performance-Einbußen bei den dunkleren Sternen, bei den ganz hellen Sternen ist sowieso kein Problem. Also die ganz hellen Sterne,Die sind so hell, da machen so ein paar dunkle Strom, Pixeln, nichts aus. Man merkt, sieht man gar nicht.Also wir hoffen, dass wir weitermachen können, aber es ist natürlich nicht nur eine technische Frage, auch eine finanzielle Frage. Muss ja die das die Bodenstation weiter betreiben, die ganze wissenschaftliche Planung weiter betreiben.
Tim Pritlove
Ich meine, das ist ja dann immer so eine Rechnung, man hat ja sehr viel für den Bau, für die Planung, die ganze Vorarbeit aufgewendet. Das ist ja das bei einer Verlängerung der Mission fällt das ja dann alles nicht mehr ins Gewicht. So, sondern man kriegt ja quasi einfach mehr sozusagen. Klar, man hat dann halt eben regelmäßige Kosten.Machen denn so die regelmäßigen Dauerbetriebskosten aus im Verhältnis zum Gesamtvolumen. Grob geschätzt.
Christopher Broeg
Ich würde sagen so sind wir schwer zu setzen, weil die Gesamtkosten waren schätzen wir es auf 100 Millionen Euro,Aber man weiß, bei den Partnerländern nicht genau, wie viel die ausgegeben haben. Es war es dann immer so, Deutschland hat zum Beispiel versprochen, das Kernstück zu liefern, diese super stabile Kamera,für die Finanzierung zuständig also und haben dann auch geliefert wie er wie gewünscht und funktioniert super. Den kann man nicht genau sagen wie viel Geld zur Ausgabe ungefähr 100 Millionen und wir schätzen ungefähr 1 Prozent der Kosten braucht man so pro Jahr als laufende Kosten.
Tim Pritlove
Okay, also eine Million ist ja eigentlich auch ist ja noch, geht ja noch.
Christopher Broeg
Geht ja noch, aber muss.
Tim Pritlove
Muss auch muss auch erstmal von jemanden bezahlt werden, klar.
Christopher Broeg
Dann aber ich meine von Eser Seite ist es deutlich günstiger. Also die Million war jetzt auf Schweizer und Hauptmissionszeiten wir die gesamte Mission leiten,Das ist ja auch das Besondere an Keops, dass wir seitdem wir das Commissioning abgeschlossen haben. Wie hat Esa uns die Verantwortung quasi komplett übergeben und wir leiten die Mission komplett allein,Es ist immer noch beratend und unterstützend dabei. Isa ist auch der launching State. Das heißt, sie sind verantwortlich, wenn das wenn jetzt Keops auf irgendjemanden abstürzen würde.Wäre schuld. Also haben sie natürlich ein Wörtchen mitzureden, wenn wir dann zum Beispiel die Commissioning machen, dass wir,alles sauber machen und wir haben auch die volle Unterstützung der Experten, aber wir sind eigentlich verantwortlich das Ding zu leiten und zu managen.
Tim Pritlove
Auch wenn jetzt so Kollisionen drohen, was hier glaube ich auch einmal passiert ist, ne?
Christopher Broeg
Kollision das dann eben so, dass wir einen Service gebucht haben von der von der Space Day Office heißt's so schön. Also Weltraumstrottabteilung,uns hilft, die Unmengen an Daten, die man von Chasebock, also von Johnson Space-Centern, USA, die diese ganzen Rudertracking machen,und und eine Datenbank haben, äh.
Tim Pritlove
Weiterzuleiten und zu warnen.
Christopher Broeg
Dann die bekommen dann ganz viele Daten, die für unseren Orbit ungefähr,relevant sein könnten, aber da muss man auch genauer rechnen, sonst würde man ständig Warnungen bekommen jeden Tag.Und das machen die für uns und sagen dann, Moment mal, hier ist eine Kollision, dass ich in drei Tagen die hat eine Wahrscheinlichkeit von größer als zehn noch minus vier. wir müssen reden.Und dann überlegt man gibt's Ausweichmanöver, die man fliegen kann, soll muss, dann wartet dann meistens, wenn die Daten dann immer genauer,kommt einfach immer näher zum Zeitpunkt und dann wird natürlich der Fehler der Abschätzung des Ortes immer geringer und dann in der Regel kann man dann sagen, okay, wir fliegen einfach weiter,Und einmal mussten wir ihm ausweichen, aber es macht eben die ESA für uns halt als Service.
Tim Pritlove
Awareness von der Isa. Habe ich auch eine Sendung zu gemacht, kann ich mal drauf verweisen. Raumzeit vierunddreißig, da war das allesauch am Anfang mit Detlef Koschnyund mit Holger Krag vom habe ich mich auch schon zweimal unterhalten über die Problematik des Weltraum Schrotts und wie gut's da auch beziehungsweise auch wie Schlechtes da voranläuft in dem ganzen Bereich. Da ist ja noch eine ganze Menge zu holen.Einmal musste Keops ausweichen bisher, ne? Dann hoffen wir mal, dass das nicht so oft passiert. Aber es ist mittlerweile schon ganz schön was los im Orbit.Trotzdem so ein ein Tipp, also es könnte schon auf eine Erweiterung der Mission zumindest eine hinauslaufen. Ist nicht ganz unwahrschein.
Christopher Broeg
Ich hoffe sehr, ja. Also wir wollen, also von Schweizer Seite, von spanischen Seite gibt's ja positives Signale,Denke auch von Esa-Seite. Ist so eine kleine Mission aus Eser Sicht. Das ist ja die erste und einzige S-Klass-Mission.Nicht viel sparen können, indem sie ihre ihre Esarsch-Keops-Beteiligung jetzt zusammenstreichen. Also eine Emission kann man damit nicht ein Jahr lang verlängern,Also hoffen wir, dass dass es dann am Ende positiv ausgeht. Also wir haben jetzt dieses Review, wo wir jetzt technisch im November diesen Jahres zeigen müssen, dass es eben,uns nicht der Treibstoff ausgeht, dass wir dann am Ende immer noch sicher die arbeiten können, dass die Wissenschaft immer noch gute Qualität liefern wird,Das wird dann begutachtet und dann als Grundlage genommen dann für die Abstimmung für die finanzielle Abstimmung. Aber erstmal müssen wir zeigen, dass wir technisch,gute Wissenschaft liefern können und ich denke, ich kann jetzt sagen,mit allen Analysen, die wir in den letzten drei Monaten gemacht haben, nur zu diesem Thema, dass das noch gute Wissenschaft bis 2028 sicher möglich sein wird.
Tim Pritlove
Super.Dann wünsche ich auf jeden Fall viel Erfolg für den Rest der Mission und dass der Rest der Mission noch möglichst lange anhält. ich denke ist auf jeden Fall gerade haben wir ja eingangs auch besprochen. Exoplaneten sind einfach grade,tolles Thema und da passiert einfach eine Menge der Informationsgewinn ist extrem groß und ja da kann ein Jahr jede Mission, die an der Stelle weiterhilft interessante Beobachtungen zu machen, eigentlich nur hilfreich sein.Vielen Dank fürs Gespräch. Christopher Brück.
Christopher Broeg
Ja, sehr gerne.
Tim Pritlove
Vielen Dank fürs Zuhören hier bei Raumzeit. Das war's. die neunundneunzigste Ausgabe. Lasst euch überraschen, was bei der 100 auf euch zukommt. Bis dahin sage ich tschüss und bis.

Shownotes

RZ098 Geschichte der Europäischen Raumfahrt

Europas steiniger Weg zu einem der großen Mitspieler der Internationalen Raumfahrt

War Europa führend bei der Entwicklung der ersten Raketentechnik zu Beginn des 20. Jahrhunderts blutete sie in Folge des zweiten Weltkriegs nachhaltig aus und und brauchte ein paar Jahrzehnte, um die wieder auf die Füße zu kommen. Sinnbildlich für aber auch vorbildlich für den schwierigen Einigungsprozess Westeuropas fanden die großen europäischen Staaten nach einigen Mißerfolgen gegen Ende der Siebziger Jahre langsam zueinander und mit dem Erfolg des Ariane-Programms stieg auch die Bedeutung der Europäischen Raumfahrt im internationalen Vergleich und Wettbewerb stetig an. Heute ist die ESA und die europäische Raumfahrtindustrie die am besten vernetzte Wissensschaftsstruktur der Welt und trägt besonders mit seinen Erdbeobachtungsprojekten erheblich zur Gesamtleistung der Raumfahrt bei.

Dauer:
Aufnahme:

Helmuth Trischler
Helmuth Trischler

Wir sprechen mit dem Technikhistoriker und Museumsleiter für Forschung am Deutschen Museum in München Helmuth Trischler. Helmuth Trischler beschäftigt sich intensiv mit der Geschichte der Raumfahrt. In dieser Rolle ist er auch aktiv in die historischen Forschung der ESA selbst mit eingebunden.


Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Tim Pritlove
Hallo und herzlich willkommen zu Raumzeit, dem Podcast über Raumfahrt und andere kosmische Angelegenheiten. Mein Name ist Tim Pritlove und ich begrüße alle hier zur Ausgabe 98 von Raumzeit.Äh ja ich bin immer noch auf Reisen und heute hat mich der Weg nach München geführt.Und äh vor allem soll mich der Weg aber so ein bisschen in die Vergangenheit führen, in die Geschichte der Raumfahrt, das soll das Thema heute sein,äh ja da bin ich glaube ich am richtigen Ort nämlich am deutschen Museum und begrüße meinen Gesprächspartner, nämlich Helmut Trischler. Schön.
Helmuth Trischler
Hallo, grüß sie, hallo.
Tim Pritlove
Herr Tröschler, Sie sind hier äh in der Museumsleitung des deutschen Museums ähm dabei.Ähm weiß gar nicht, wie viel Leute sich hier die Arbeit teilen, aber ihr Bereich ist die Forschung, richtig?
Helmuth Trischler
Ja wir sind ja ein sogenanntes Forschungsmuseum,integriertes Forschungsmuseum, das heißt äh wir wir starten eigentlich mit der Forschung und darauf bauen sich alle anderen Funktionen des Museums auf, die Ausstellung, die Sammlung, aber vor allen Dingen auch die Bildungsarbeit und ähm.Als äh solches sozusagen verantworte ich dann die Forschung, das sind vielleicht äh dazu gehört auch das Archiv, diedes deutschen Museums, äh die die Forschungslaboratorien, denn gerade da im Restaurierungs- und Konservierungswissenschaftlichen Bereich, aber eben auch die wissenschaftstechnik und die Umweltgeschichte. Das ist so meine Profession.Und ähm.Das sind so vielleicht hundert Leute äh in meinem Bereich. Also wir wir versuchen da uns schon auch in vielen Kooperationen mit universitärer Forschung, ähm sei es jetzt nun auch in der Wissenschaftskommunikation, sei es in der Bildungsarbeit, aber auch in der ganz konkretenäh naturwissenschaftlichen Forschung und äh eben Wissenschaftstechnik, Umwelthistorischen Forschung zu tummeln und haben da ähm einen Schwerpunkt.Der vielleicht auch in der Raumfahrt liegt.
Tim Pritlove
Mhm. Einmal das deutsche Museum bisher wirklich eine ähm eine extrem große Organisation. Hier wird ja äh alles Mögliche abgedeckt. Welchen Teil nimmt denn äh diese Forschung und ist speziell die Raumfahrt ein hier?
Helmuth Trischler
Ja, also wir haben einegroße Raumfahrtausstellung, die aktuell nicht äh zu besichtigen ist, weil wir gerade in einer, was wir in den Initiative, also einer grundständigen Sanierungdes deutschen Museums sind als Gebäude zunächst mal Brandschutz und was es da alles so gibt aus Neu zu berücksichtigen ist und da deswegen ist äh derzeit die Hälfte des Museums im Grunde geschlossen für eine Sanierung und äh eine ja auch.Dann überarbeitung aller Ausstellungen und äh dieser erste Teil wird im Mai nächsten Jahres abgeschlossen sein und dazu gehört eben auch dieRaumfahrtausstellung, die aktuell noch nicht zugänglich ist, aber im Grunde schon wieder aufgebaut ist und wartet, bis die Sanierung abgeschlossen ist, um dann wieder öffnet werden zu können. Das ist eine relativ äh große Ausstellung zusammen eben mit der Luftfahrtausstellung äh so fünf, sechstausend äh Quad,Meter.Und die wird dann ab äh Mai nächsten Jahres endlich wieder zu besichtigen sein äh mit auch mit einer Aktualisierung, dass äh die die neuen Themen, die uns darauf kommen sicher noch zu sprechen in der Raumfahrt.Kommerzialisierung und äh all die Missionen, die in den letzten Jahren gelaufen sind, auch in dieser Ausstellung dann sozusagen.Aktuell zu sehen sein äh wird.
Tim Pritlove
War die jetzt geschlossen.
Helmuth Trischler
Die war jetzt sechs Jahre geschlossen.
Tim Pritlove
Oha, okay.
Helmuth Trischler
Sowas dauert, ist eine das sind 70.000 Quadratmeter Ausstellungsfläche äh die da.Erneuert werden müssen und in einem komplexen Prozess eigentlich eine Operation im offenen Herzen. Wir haben das Museum ja nie geschlossen. Die andere Hälfte.Bleibt offen mit all den Problemen, die daraus resultieren, aber immerhin, das Haus ist groß genug, sodass äh unsere Besucherinnen und Besucher immer noch was zu sehen haben.Aber die Raumfahrt Aficionadus, die freuen sich sicherlich darauf, endlich mal wieder unsere Raumfahrt äh besichtigen zu können.
Tim Pritlove
Was hat die Ausstellung denn so abgedeckt bisher.
Helmuth Trischler
Ja, schon die, ich sage mal, lange Geschichte der der Raumfahrt,gerade nicht nur der bundesdeutschen, gerade auch der europäischen Raumfahrt, äh von den Anfängen in den Zwanzigerjahren, als ich äh im Grunde so was wie eine Raumfahrtbegeisterung, gerade auch in Deutschland entwickelteüber die schwierige Geschichte der der Raumfahrt im Nationalsozialismus äh Werner von Braun, Peemünde, ähm.Das sind äh Themen, die müssen da vorkommen, ja auch mit äh der V zwo Rakete, die da ausgestellt,äh ist und wieder sein wird äh V eins und so weiter. Ähm.Bis eben äh nach 9zehnfünfundvierzig das Weltraumrennen äh Space Race zwischen den USA ähm und äh der Sowjetunion, das war ein großer Schwerpunkt und dann vor allen Dingen eben auch die Satelliten äh Mission,die Kommerzialisierung der Raumfahrt, äh eine große äh Wetterstation Eu.Mit Wetterstation, sodass wir einfach sehen, dass die Raumfahrt bei uns mitten im Leben angekommen ist und nicht,irgendwie ein, ich sage mal, ist technisch äh esoterischer Bereich gerade so ist äh der äh der mitden Alltagserfahrungen äh der Menschen nichts zu tun hat. Das Gegenteil ist ja der Fall und äh also insofern auch den Anwendungsbereich. Der Raumfahrt, den wir aber jetzt sicherlichwerden. Das war man könnte sagen, die Raumfahrt äh so wie sie Bestand ist so in etwa bis 2tausend10 aktuell gewesenund die die neueren Entwicklungen werden da auch zu sehen sein aber doch auch sozusagen ein Durchgang durch die Geschichtenicht nur der deutschen Raumfahrt, das deutsche Museum versteht sich gerade nicht als ein nationales Museum, das nur deutsche Technik und Wissenschaft zeigt. Im Gegenteil, so ein aus einer globalen, aus einer planetaren Perspegerade in der Raumfahrt ist das ja wichtig, also insofern äh wie gesagt, das äh sowjetisch amerikanische Space Race ähkommt da genauso vor wie die europäischen Kooperation äh in der Raumfahrtdiesa und äh Galileo und äh.Weiter zurückreichende Kooperation mit mit schon auch äh sozusagen wirklich wichtigen Exponaten, dieda zu sehen sind die so auch äh der deutschen und europäischen Raumfahrt gewesen sind.
Tim Pritlove
Wird sich denn mit dem,Umbau auch die Herangehensweise der Ausstellung selbst ändern, also inwiefern passt sich denn das Museum jetzt an die neuen Bedingungen an? Ich meine.Sozusagen der Kampf um die aufmerksamkeit und das Wissender ist ja äh voll entbrannt oder steht vielleicht nicht unbedingt ein Konkurrenz zueinander, aber auf jeden Fall hat natürlich das Internet hier auch eine ganze Menge verändert, was ähm so die Quellen für Informationen betreffen, wie antwortet ein Museum auf.Auf diese Trends.
Helmuth Trischler
Antwortet das deutsche Museum glaube ich ganz offensiv, wie viele andere Museen eben auch. Ähm Stichwort Digitalisierung, ja, dass wir,so etwas aufbauen äh wie einen digitalen Zwilling des Museums. Wir nennen das deutsches Museum digital, da haben wir sehr früh begonnen und auch sehrkraftvoll äh begonnen, relativ viel äh auch Ressourcen investiert. Das gehört zu meinem Bereich. Deutsches Museum digital, sodass wir ähmso viel wie möglich digitalisieren in allen Bereichen archivisches Material, Bibliotheksmaterial, aber insbesondere eben auch dreidimensionale O.Und die aufeinander bezogen. Nehmen wir mal irgendwie einen Nachlass eines äh Raumfahrtpioniers. Da haben wir dann eben OP.Wir haben seine Labor äh Bücher oder seine äh sagen wir mal Skizzenbücher und wir haben vielleicht auch seine Bibliothek ja und dasgeht in unserer Luft- und Raumfahrtdokumentation ganz besonders. Also insofern äh dieser digitale Zwilling, den bauen wir auf. Ähmund äh wir haben natürlich äh gerade jetzt in der Pandemie auch noch mal stärker.Auf äh digitale Ausstellung gesetzt, auf digitale Führung, ähm um ebenja nicht nur dem Präsenzbesucher und Besuchern etwas zu bieten, sondern im Grunde auch äh eine Global Audience zu bedienen, um mal so zu formulieren,das das ist äh in wie gesagt äh ein Trend in der Museumsszene. Man könnte sagen, die Pandemie hat das äh beschleunigt. Äh das war schon langeauf dem Wege oder waren einige Jahre schon auf dem Wege. Die Pandemie hat es beschleunigt äh und insbesondere und eben auch im deutschen Museum.Das ist eine Reaktion, äh die andere äh würde ich sagen, die äh auch im Zusammenhang mit der Pandemie irgendwie noch mehr Sinn macht als äh je zuvor ist Partizipation.Wir alle wissen, dass wir,in einer Wissensgesellschaft äh leben äh und dass wir ähm stärker denn je unsere Besucherinnen und Besucher ja ermächtigen.Wollen, eine Plattform bieten, einen offenen Raum,der Partizipation äh sich zu beteiligen am wissenschaftlich äh technischen Dialog äh nicht äh diese Einbahnstraße der Kommunikation weiter fortzuschreiben, dielange äh Public Understanding of Science auch noch äh um dieses Schlagwort zu gebrauchen in der in der Landschaft vorherrschte, dass da die,sozusagen autoritär autoritative Stimme der Wissenschaft zur Öffentlichkeit spricht.Das sind ja Formate, die die die gängig sind, die uns äh auch sozusagen schon schon lange beschäftigen, sondernWissenschaft im Dialog äh war, war ja auch eine große Initiative in Deutschland und das aber sozusagen von von der anderen Seite her noch stärker zu denken.Partizipation wirklich ernst zu nehmen und der Öffentlichkeit äh eine Stimme zu geben. Wenn es drum geht äh Wissenschaft und Technikmitzugestalten, diese Partizipation und eins der neusten, ich sage mal Kinder, die wir da auchgezeugt haben und äh und gerade aufbauen, ist ähm wir nennen das Munich äh Center of Science Communication, Science Communication Center on Planet,die Planetare Gesundheit. Das ist das, was wir ja auch in der Pandemie erleben, die die unauflöslicheVerknüpfung von Umweltgesundheit, Klimawandel et ceteravon menschlicher Gesundheit, ja. Das eine geht ohne das Andere nicht oder das eine ist ohne das andere äh im Grunde sozusagen äh zukünftig weniger denk.Den je und ähm da haben wir von der Volkswagenstiftung äh eine großzügige Förderung erhalten und wir, das sind dann eben Partner hier im Münchener Raumdie die Wissenschaftskommunikationsforschung an der Universität,und die planetaren Gesundheitsforscher das ist bei ja ein neues Feld ein, das sich jetzt ähmSeiten einer Initiative von Lanset seit 215 herausgebildet hat.Und zwei, ich sage mal, Kommunikations äh äh das ist eben das deutsche Museum und unser Pendant in dem Naturkundebereich Biotopia das äh künftige vergrößerte Architekturkundemuseum.In München und das Helmholtzzentrum für Gesundheitsforschung äh sind noch weitere Partner, aber das das ist so dasKernsetting und genau äh da geht's uns auch darum diese sozusagen partizipative Form der Kommunikation dieses neuen Feldes zu bespielen. Also das sind so.Themen, die uns dort beschäftigen ähm und und und wo wir, glaube ich, schon auch in der internationalen Szene äh Akzente setzen.
Tim Pritlove
In Raumzeit Nummer 86 habe ich hier mit äh Ansgar Grisshake gesprochen, der ähm Naturkundemuseum in Berlin verantwortlich ist für die Meteoritensammlung und äh abgesehen davon, dass er sehr viel Interessantes über Meteoriten äh erzählen äh konnte.Auch äh schnell klar, dass diese Metoritensammlung und die Arbeit des Museums ja auch Teil des wissenschaftlichen Prozesses ist. Das sind insbesondere die Sammlung und dann eben auch der digitale Zugang äh dazu ja auch verflochten ist mit der wissenschaftlichen Forschung.Vermute mal Ähnliches findet hier auch statt.
Helmuth Trischler
Genau, das nennen wir eben das integrierte Forschungsmuseum, das Naturkundemuseum in Berlindas deutsche Museum sind zwei unserer sogenannten acht Forschungsmuseumen in Deutschland, also Mitglied der Leibnizgemeinschaft äh dann sozusagen vom Bund und den Ländern gemeinsam äh gefördert und wir sind ein eng verflochtener,ähm der äh gerade auch ein größeres,Kram aufgesetzt, hat wir nennen's Aktionsplan, Forschungsmuseum, wo wir viele gemeinsame Aktivitäten fahren, ob wir das jetzt mit Medienmachen wie der FAZ, wo wir jetzt gerade in gemeinsamen äh Wettbewerb haben oder ähm derGlobal Summit of Research Museums, da war der Erste vor drei Jahren in Berlin am Naturkundemuseum und äh tatsächlich bin ich äh zufällig äh eben jetzt gerade auch der Organisator des Zweiten äh Global Summits der hätte in zwei Wochen stattfinden sollen, pandemiebedingt haben wir ihn jetzt um ein JahrEr findet statt als digitale äh Global Summit äh mit vielleicht 300Museumsdirektorin.Äh weltweit. Äh das machen wir. Ähm äh neunzehnten, zwanzigsten Oktober.Und äh als als physische Veranstaltung machen wir's dann äh im Oktober nächsten Jahres. Also da gibt's enge Austauschbeziehungen und das genau diese ja ich nenne das so etwas hochtrabendsag mal so epstämischer Zirkel, den wir da haben, ja? Die Forschung ist die ist die Ausgangsbasis des Museums und da bauen sich die anderen ähm Produkte und Aktivität,auf, die Sammlung, die Ausstellung, die Bildungsarbeit und aus der Beschäftigung mit Sammlungen mit Ausstellungen entstehen, dann wieder neue Ideen für neue Forschungs.Aus denen dann vielleicht wieder eine Ausstellung wird. Also so dies diese diese Verflechtung. Äh das ist das ist das, was wir im integrierten Forschungsmuseum anzielen.
Tim Pritlove
Podcast werden ja auch noch in 500 Jahren gehört, deswegen äh zur Einordnung jetzt äh haben wir gerade Ende September 2021, das heißt äh dieser Summit wird dann in MünchenZwanzig zweiundzwanzig dann hoffentlich stattfinden, falls wir uns nicht noch eine weitere Pandemie eintreten. Ich hoffe, das bleibt uns allen erspart. Genauso ist es.Bevor wir vielleicht in die äh Raumfahrtgeschichte selbst ähm eintreten, würde mich natürlich nochmal interessieren, wie so ihr persönlicher Weg eigentlich da rein äh gewesen ist.Haben sie eine.In der Wissenschaft von Anfang an angestrebt oder eher ein Zufalls. War's ein Zufallsbund? Es gibt ja solche und solche.
Helmuth Trischler
Zufeige äh vielleicht Gericht oder Zufall, Kontingenz nennt man das. Also ähm ich ich bin Historiker, allgemein Historiker eigentlich von meiner Ausbildung her.Und und zufällig in in das Thema Technik und und Wissenschaftsgeschichte gekommen über über meine Dissertation, die über technische Angestellte war und dann vor allen Dingen über mein zweites Buch äh Habilitation in Deutschlandwo es um die Luft und Raumfahrtforschung ging, also eine Geschichte der Luft- und Raumfahrtforschung als ich habe das genannt, so politische Wissenschaft,politisierte Wissenschaft, früh äh politisierte Wissenschaft so von äh also in der Luftfahrtforschung um die Entstehung um 1900 herum äh bis in die 197er Jahre und äh das für die Luftfahrt und Raumfahrtforschung habe ich mir angeguckt.Wie sich also diese politisierte und politische Wissenschaft da jetzt in in Deutschland entwickelt hatund und seither bin ich sozusagen in diesem Feld ähm äh der Wissenschafts- und Technikgeschichte und macht das professionell und insbesondere seit ich dann also äh nicht nur an der Universität tätig bin, sondern eben auch im deutschen Museum so eine.Doppelte ähm.Aufgabe ähm hier die Forschung zu verantworten und dann eine Professur jetzt in dem Fall an der an der Universität in München für Wissenschaft und Technikgeschichte und Umweltgeschichte zu haben.Dann habe ich noch ein Zentrum für Umweltforschung. Äh nennt sich Rachel Carsten Center for Invement zur Seite.Im Grunde, was äh eine Kooperation der der Universität München und des deutschen Museums ist so seit zwölf Jahren, haben wir so ein so eine Thinktank, so eine internationales mhm ja Kolleg äh für umgeisteswissenschaftliche Umweltforschung. Wir haben immer so etwa 30 äh Wissenschaftler und Wissenschaftler aus der ganzen Welt hier in München, die mit uns gemeinsam über Umweltfragen nachdenkenund das ist das sind so Fragen, äh die mich ganz besonders beschäftigen und dazu kommt natürlich oder das hat zur Raumfahrt einen Bezug. Na ja und seither wie gesagt.Bin ich der der Raumfahrt irgendwie auch verbunden geblieben war, lange Zeit auch in der in der ESA, der European Space Agency in einem History-Panel.Äh so war auch so was gibt's äh in der Isar, die sozusagen ihre eigene Geschichte mitpflegen, aber das nicht aus dem Haus heraus machen, sondern sozusagen einen internationalen Beirat haben äh und da habe ich viele Interviews auch geführt mit Raumfahrtpionieren für die Isar.Und so äh bin ich der Raumfahrt verbunden.
Tim Pritlove
Mhm.Also auf der einen Seite ein Quereinsteiger, aber mittlerweile kann man das glaube ich nicht mehr behaupten. Irgendwann sitzt man ja dann äh voll drin. Mir geht's nicht sehr viel anders hier in diesem Podcast.Ja, also ich wollte heute mal ein wenig äh genauer beleuchten, wie sich denn das eigentlich allesdie Raumfahrt hat, wir haben's ja jetzt auch schon angedeutet durch die Ausstellung, die im Prinzip versucht so einen ähnlichen Weg auch nachzuzeichnen.Einen äh aus deutscher Perspektivheraus doch sehr verschlungenen Pfad genommen und äh war vor allem halt äh zu Beginn auch stark Kriegs getrieben, weil eben einfach die entscheidenden Erfindungen, die Raumfahrt überhaupt erst ermöglichthaben eben genau in diese dreißiger und vierziger Jahre hineingefallen sind, wo der Mensch äh mit seiner,Technikkunst auf einmal in der Lage war dieseeinerseits das mathematische äh äh Wissen zu haben und äh auch eine Vorstellung von von Raum und natürlich durch Einstein auch die passenden wissenschaftlichen Theorien äh auf einmal am Start waren, die.Ja ist überhaupt erst ermöglicht haben, dass man über so etwas nachdenken kann. Wenn man jetzt so ähm das.Also mein Ziel ist ja so ein bisschen mal äh eine europäische Perspektive vor allem aufzumachen, wie sich das die Raumfahrt bei uns entwickelt hat, aber.Wie weit muss man dann sozusagen zurückblicken, um wirklich so einen Urmoment zu erfühlen.
Helmuth Trischler
Ja äh wenn wir von der europäischen Raumfahrt äh Kultur sprechen, äh dann ist das sicher ein gut gesetzter Begriff.Der ähm um die Jahrhundertwende anzusetzen ist oder dessen Wurzeln in der um die Jahrhundert äh Wende anzusetzen sind und da einekleine Korrektur. Ich glaube, die die Anfänge der Raumfahrt sind zunächst mal schon ziviler Natur und sie werden dann sozusagen relativ rasch, sie haben's erwähnt. Wir kommen gleich darauf, militärisch Usub,ja aber die die Raumfahrtbegeisterung kommt aus einer ähm Gerichte teilt um die Jahrhundertwende, um die Wende vom 19 zum 2 Jahrhundert. Da finden wir relativ viele Visionen Utoähm überall in Europa äh Schildwerden ist ein Beispiel, aber viele viele andere ähm und ähm.Aus dieser Zukunftsorientierung heraus ent,gerade in den 20erjahren und hier schon speziell in Deutschland eine besondere äh besondere Raumfahrtbegeisterung ein.Ein amerikanischer Kollege hat das mal aus Misonia Institution hat das mal Space Flight fad in Europe genannt, ja? Also sozusagen dies diese Begeisterung äh in den 20erjahren und wir alle kennen den Film Frau im Mond äh.Und äh von Fritz Lang äh und und viele andere Formate, die gerade in der Weimarer Republik äh äh in Deutschland Obliquitär waren, dass der beginnende Kino ähm.Und äh die Tageszeitung bespielt ein großes Interesse der Öffentlichkeit für die Zukunft und insbesondere für die äh Raumfahrt äh Zukunft, die sich da entwickelt hat. Ähm und ähm.Ja und dann da begegnen uns diese Figuren, wie war eine von Braun und andere.Zunächst mal, ja, als als junge begeisterte Ingenieure, die da was aufbauen, die basteln und sich ihren Raketenflugplatz bauen. Ähm.Und dann aber äh werden sie sozusagen entdeckt.Von den Militärs, ja. Wir wir sind jetzt hier ein Ende der zwanziger Jahre als so was wie eine geheime Wiederaufrüstung in Deutschland stattfindet. Sie will an den alliierten Kontrollkontrollen, die so was verbieten, vorbei.Äh dass Heeres Waffenamt äh entdeckt das und bemächtigt sich also dieser jungen Raumfahrt,und spannt die in ihre Dienste ein und die spannt sie natürlich insbesondere dann ihre äh Dienste ein nach 1933, als das nicht mehr in nur im Geheimen stattfindet, sondern dann sozusagen offen gelegt wird.Und dann wird äh wird Werner von Braun äh hier ähm ganz offensiv umarmt äh von den Militärs und es werden ihm und seinen Teams ermöglich.Wie sie nirgendswo äh sonst äh geboten werden, auch international und dann kommt es eben zum Aufbau.Von Peemünde, also dieser damals Heeresversuchsanstalt. Das äh ist einer der Rüstungs.Im Nationalsozialismus gewesen,waren häufig konkurrierend unterwegs, gab Heres Versuchsanstalt Ost, das ist Peemünde und eine Westfrau, da war die Luftwaffe, ja und jetzt hier und das und die Luftwaffe konkurriert und die hatten jeden äh ihr ihre äh streng voneinander abgeschotteten Technik.Ein Pänemünde. Na ja, jedenfalls wenn er vom Braunbaute dann seinen Komplex auf.Und äh daraus äh wurde dann eben äh die V zwo, ja, weil die A vier äh,zunächst mal und dann eben als Vergeltungswaffe fort äh zwo genannt. Das ist der Beginn, wenn man so will jetzt,der Raumfahrt äh international und die V zwo ist sicherlich einer der äh bis dahin ohnehin äh größten Rüstungskomplexe, die es weltweit gegeben hat. Wir schätzen das etwa äh 2 Milliarden.Reichsmark verschlungen hat.Ein riesiger, ein riesiger Technikkomplex mit 10.000 Ingenieuren, äh die da und Wissenschaftler, die da beschäftigt waren.Und sehr vielen Songsarbeitern, die ihr Leben gelassen haben beim Bau der V zwei. Das wissen wir heute auch und das gilt's immer mitzudenken und zusammenzudenken und das äh Werner von äh Braun das wusste, äh mit wem er sich da eingelassen hat,äh äh sozusagen was äh seine Forschung und vor allen Dingen seine Entwicklungsarbeiten für Konsequenzen hatten. Das wissen wir heute auch.
Tim Pritlove
Wie würden Sie diesen Menschen charakterisieren? Ich meine, am Anfang über eine Begeisterung, die jetzt noch äh entkoppelt war, äh.Zwanziger Jahren, von dem was danach äh kam, dann wurde er halt entdeckt, wurde irgendwie tja weiß ich nicht rekrutiert oder vielleicht auch einfach mit den Möglichkeit,sich so seinen eigenen persönlichen Traum zu erfüllen ohne jetzt diese Konsequenzen zu sehen. Gibt ja auch dieses äh Zitat so.Ja was ist wo die Raketen wieder runterkommen? So ja das ist nicht mal Department, das ist irgendwie nicht da habe ich nicht drüber nachzudenkenIst ja auch so ein bisschen so ein.So eine Art Sünden äh Fall, so was was habe ich für eine Verantwortung für mein eigenes äh Handeln? Wie bewerten die Historiker seine Rolle?
Helmuth Trischler
Ja äh es gibt hier eine ganz vorzügliche Biografie äh eines amerikanischen Kollegen Michael Nohfeld, Michael Neufeld äh ähKurator für Raumfahrt ein ähm Nationalmuseum äh Air and Space Museum in in den USA, der eine 600 Seiten dicke BiografieDas ist das autorisierte, ich sage mal äh nicht autorisierte, aber das wichtigste Werk äh gewesen und er nennt äh das äh Dreamer of Space, aber dann eben auch äh das gegen äh das Gegenbild und ich glaube, beides ist richtig. Also Werner von Braun war sicherlich überzeugt davon, dass ähm äh,ist eine sozusagen zivile Zukunft äh der Raumfahrt geben wird und dass man äh vor allen Dingen.Er wollte ja zum Mars zunächst mal die Mondlandung war für ihn. Dann irgendwie ja kam er eben dazu äh und und und musste sozusagen diesen Umweg gehen, aber eigentlich wollte er zur Maus.Und und das hat ihnen frühzeitig wie wie die ganze Literatur, die Zukunftsliteratur, die äh mit der er groß geworden ist, beschäftigtund und das das war sicherlich sein Antrieb ja aber er wir kennen in Deutschland ähm oder haben mittlerweileglaube ich gerade im im im Bereich jetzt auch der Wissenschafts- und Technikgeschichte, eine Vielzahl von von äh ähnlich gelagerten äh,ähm sozusagen in den Blick genommen und da war eben diese äh.Können von einer äh wechselseitigen Ressourcenmobilisierung reden. Das äh NS-Regime brauchte die Ingenieure, es brauchte die, die die Wissenschaftler und die Wissenschaftler profit.Davon, ja, ihre ihre ähm ihre Forschung konnten sie ausweiten, sie konnten neue Disziplinen.Begründen, sie sie bekamen Möglichkeiten.Der technischen und wissenschaftlichen Entfaltung an die Hand, die natürlich großartig waren, die bestechend sind, ja? Nicht bestechi, aber bestechend sind und und viele äh Naturwissenschaftlerinnen und Naturwissenschaftler und Ingenieure haben das eben genutz.
Tim Pritlove
Ist ja auch heute nicht anders.
Helmuth Trischler
Das ist heute nicht anders. Die Politisierung von Wissenschaft und Technik ist heute genauso da und die war im Kalten Krieg. Äh ebenso da. Aber es macht natürlich schon einen Unterschiedman dann mit äh mit zieht, ja, wie, wie, wie, wiezehntausende von Zwangsarbeiter und Zwangsarbeiter da ums Leben kommen oder nicht. Also von daher ist die Verantwortung äh es frage schon eine wichtige und und die moralische Frage ein wichtiger, aber wir können das erklären aus dieser ja aus aus diesem Ressourcenüberfluss äh der dergrade in den Bereichen. Sie müssen sich vorstellen, im in der Weimarer Weimarer Republik, also bis äh äh war waren Raketen verbotenäh oder oder oder es war noch gar nicht erfasst, aber die die also Motoren, man konnte ja eigentlich keine Motoren äh größeren äh Maßstabs äh äh grade in der Luftfahrt insbesondere entwickeln und dann kommtplötzlich ein Regime und überhäuft einen mit Möglichkeiten, ja und das ist natürlich verführerisch und ähm und wurde genutz.So müssen wir das auch bei Wanne von Braun sehen ähm und und er war sicherlich ein genialer äh Macher, äh nicht nur Finder und auch kreative Ingenieur, sondern auch Organisatorund diesen riesigen Komplex ja ein wissenschaftlich-technisch akademischen Komplex hat er da in Peemünde aufgebaut.Geleitet ja und und mit seiner charismatischen Führungspersönlichkeit äh zusammengehalten.All der äh wir nennen es polygratischen äh.Probleme im im nationalsozialismus, wo jeder gegen jeden im politischen äh Raum gibt, gekämpft hat, ja und um Ressourcen. Er hat das zusammengehalten.Das prägte ihn auch und da kommen wir jetzt, wenn man so will, äh schon äh auch in die Fünfziger, Sechziger in das Apollo-Programm hinein. Ähm diese Vorstellung.Ich habe hier ein wissenschaftlich technischen Komplex äh der zusammengehalten wird durch mich der integriert ist,der seine Stärke daraus bezieht, dass alles unter einem Dach zu passieren hat, ja und dass ich äh alles kontrollieren kann, dass ähm.Dann als er nach 1945 in den USA tätig wird und äh darauf kommen wir jetzt vielleicht zu sprechen.
Tim Pritlove
Genau, also man muss sagen halt nach der Niederlage Deutschlands äh oder einfach ja der Kapitulation des Nazi-Regimes.Das halt immer so ist ähm.Das Land ist besiegt, aber die äh besten und diejenigen, die äh wirklich bis äh bis dahin das System auch am,am Laufen gehalten haben, insbesondere in solchen technischen Bereichen sind natürlich von großem Interesse und die USA haben ihn halt ein Angebot gemacht, was er so nicht ablehnen äh konnte oder wollte und äh haben einfach gesagt, mach doch einfach das,verwirkliche doch deine Träume bei uns und dann ist er eben zur NASA gewechselt oder war sozusagen Teil der des der Geburt der NASA.
Helmuth Trischler
Genau, zunächst zu Army. Ähm wir nennen das intellektuelle Reparation.Dies ist äh dass die dass die Alliierten und nicht nur die USA genauso die Sowjets und genauso äh Großbritannien und Frankreich der deutschen Spezialisten äh Ingenieure äh Experten habhaftig werden wollten.Und zwar in der Konstellation, in der sich der kalte Krieg formierte, ja? Und äh und jeder für sich da Vorteile verschaffen wollte. Und schon noch während des Krieges gab es ähm.Teams, äh die äh sozusagen ausspäten und die Aufgabe hatten, wen gibt's denn da in Deutschland, der die an diesen Wunderwaffen und so weiter abbauäh sprich an an äh Innovation, Technologien, die wir brauchen können für die Zeit nach demKrieg und vor allen Dingen für die sich abzeichnende Verlängerung in in den kalten Krieg hinein und das waren äh das waren Spezialistenteams, Wissenschaftlerteams, die sozusagen vorrückend mit der Front äh nach Deutschland kamen und danndie Experten Befragten Werner von Braun äh genauso befragt wie die wie die äh jenigen die in derKernwaffenforschung tätig waren, die in der Mikroelekt äh in der Elektronik äh äh sich äh neue,Waffensysteme überlegt hatten in Deutschland et cetera und sie wurden sowohl jetzt äh der Teams harbhaftig als auch der,der Baupläne et cetera, die da herrschten, äh die da vorhanden waren. Und und so äh wurde auch noch von Braun befragt und da merkt man, ja okay, das ist äh die den brauchen wir äh für den Bau von äh,äh und insbesondere dann im Zusammenhang ähm mit der Atombombe für nukleare Trägerwaffen.Das ist das, was Wanne von Braun dann zunächst mal äh machte er und und seine Penemünder. Er nahm einfach möglichst viele seiner Vertrauten mit und dieses Team Penemünde war dann eben,zuerst meinen äh in Hansviel Alabama und baute für äh für die US US Armee äh nukleare Raketen.Als Trägerraketen. Und äh erst später kam äh als dann sozusagen das Apollo-Programm ins Laufen kam nach dem Sputnik-Shop,Schock äh parallel dazu bediente er schon äh er war einfach auch eine öffentliche Person.Die es verstanden mit den Medien zu spielen und sozusagen seine Vision der Mauslandung dann weiter zustricken sozusagen in den USA und der wurde sozusagen zu einem öffentlichen Wissenschaftler, öffentlichen Ingenieur, der äh medial sehr präsent war.Und äh und da sich sozusagen dann platzierte und als es dann für ähm äh ja äh zu zu dem großen.Kenne die lancierten äh sozusagen Programm äh äh Programm kam, wenn man so will. Da war er schon in Stellung, konnte konnte konnte sich äh,empfehlen dafür, dass er derjenige ist, der ein solches großes Programm stemmen kann.
Tim Pritlove
Wie war denn da die Perspektive der Amerikaner auf seine Person? Ich meine er war ja dann sozusagen jahrelang wurde ihnen halt immer erzählt ja die Deutschen, das sind so die ganz äh bösen Menschen. Und dann holen wir uns doch einfach mal die und dann sind das unsere Popstars.
Helmuth Trischler
Ja äh tatsächlich äh haben die äh amerikanischen Medien, dass ähm äh relativ.Eindeut.Weil da war nicht mehr viel von NS-Vergangenheit, sondern da war er war mittlerweile Amerikaner geworden, hatte die US-amerikanische Staatsbürgerschaft. Wie so viele andere äh USA sind ja doch ein Metingund dann äh war er eben im amerikanischen Staatsbürger und dessen die NS-Vergangenheit war da weit weg oder wurde eigentlich kaum bedient, sondern eigentlich seine Vision.Seine Zukunftsvision, die so äh plakativ waren und in diesen amerikanischen Technikmagazinen et cetera,blumig und farbig in der im wahrsten Sinne des Wortes ausgemalt worden sind. Und der war ein genialer äh Wissenschaftskommunikator und ähm Disney äh bediente sich Disney und und vieler anderer Medien und wurde so so ein früher.Da kann man sagen jetzt der der Wissenschaft und und darauf sprang die Medien an.
Tim Pritlove
Weil er einfach auch zum amerikanischen Selbstverständnis und dem amerikanischen Traum einfach äh passte, so der Sky ist the limit und in dem Fall noch nicht mal mehr der Himmel.Wie wurde das jetzt aus was wurde sozusagen in dieser Zeit aus Europa? Weil das war ja im Prinzip,auch äh diese.Dieser äh Intellektuellen äh Ressourcen und natürlich auch anderer äh Ressourcen so im in der Nachkriegszeit, da war natürlich Europa vor allem erst mal damit beschäftigt, überhaupt erst mal wieder auf die Beine zu kommen. Das sollte ja nochmal sozehn, 15 Jahre dauern, bis der europäische Motor auch wirtschaftlich insgesamt wieder ähm zum Laufen kam.Welches Dasein hat dann die Raumfahrt dort überhaupt noch befristet? Was war denn noch übrig?
Helmuth Trischler
Sie sprechen ein Feld an, das mich selber auch immer in meinen Arbeiten sehr beschäftigt. Das ist so die Ausbildung. Ich sage mal des Integrierten, wissenschaftlichen Europas, wissenschaftlich technischen Europas. Ich bin ja der Meinung, dass Europa ähmdenzwar auch eine politische Konstruktion, ist auch eine wirtschaftliche Konstruktion ist, aber vor allen Dingen auch zusammengehalten wurde und wird durch äh wissenschaftlich-technische Kooperation, Integration. Ich spreche ja von der,äh hinten Integration, die verdeckte Integration Europas, die aus dieser Zirkulation und Kooperation von Wissenschaft und Technik heraus entstanden ist und äh einer der Motoren ist da die Raumfahrt.Frühjahrssitzen andere Bereiche ein. Äh Sie wissen, äh wir das ist ähm sagen wir mal, dass das das Rolemodel, wie sagt man das, Vorbildmodell für auch für die da ein Raumfahrtkooperation ist, die europäische Zusammenarbeit im Bereich der Teilchenphysik.Physik äh das Zerren, das ähm äh also das große europäische ähm Teilchen, Forschungs- und ähm.Ja Materialforschungs äh zentrum äh in der Nähe von Genf ähm das 1954 gegründet wurde, ja als sozusagen Gegenstück Europas, gegen die großen äh Forschungszentrenin den USA und wo Europa sich platziert ja und so sagt er auchWir wollen ein friedliches Europa schaffen, durch Zusammenarbeit der wissenschaftlich-technischen Eliten in Europa auf diesen Zukunftsfeldern ja und da war das äh das Zaun ebendas rollte ja den Lerch, Hardon Cola hat und wo ähjüngste ja erst wieder äh sozusagen dunkle Materie und so weiter im im Vordergrund stehen. Also nach wie vor einer der der der großen äh Motoren der europäischen äh Zusammenarbeit das hatten auch die Begründer derIdee der europäischen Raumfahrt im Auge. Die kamen nämlich.Aus diesem Bereich heraus. Äh George Messi und äh Pierre Oger und wie sie hießen ähm und die dachten sich so was braucht man für die Raumfahrt auch.Nach dem Sputnik-Shop, als als man merkte, hoppla, diese,polarisierte, wissenschaftlich technische und aber auch politisch polarisierte Welt, teilt sich, wenn man jetzt so will, ähm.Äh die Filetstückchen auf, da sind die Sowjets und da sind die äh USA und Europa spielt da keine Rolle mehr. Wird da ähm eigentlich.Außen vorgehalten und ähm das das soll geändert werden und da gab's eben erste.Initiativen um 1960 herum sozusagen im Nachgang des Sputnik-Schocks äh.
Tim Pritlove
War siebenundfuffzig, ne?
Helmuth Trischler
Puddingweihende 7fünfzig ähund dann formierten sich solche Ideen. Ja also wenn die Amerikaner jetzt so äh äh mit mit Apollo ähm.Reagieren, wenn die Sowjets äh einen solchen mächtigen Komplex aufbauen. Wo ist da Europa? Äh die technologische Lücke, die da.Äh zwischen äh zwischen diesen beiden Großmächten, aber insbesondere auch den USA und Europa. Wie kann sich Europa da platzieren und in diese Aufbruchstimmung Europas, Anfang der sechziger Jahre, hinein äh eben kommen auch die ersten BemühungenEuropa im Bereich der Raumfahrt wieder auf die Landkarte zu bringen.Und und dann äh sind äh einige dieser ja frühen Vordenker äh sozusagen an die Politik herangetreten. Großbritannien Frankreich,eben auch Deutschland äh die aus zu Beginn der sechziger Jahre die Bundesrepublik dann doch auch schon wieder mächtiger äh Akteur ist, ähm um die die Ressourcen zu bündeln und zu sagen.Schafft man das jeweils nichtwie kommen wir denn da zusammen? Wie können wir ein europäisches Gegenprodukt, wenn man so will, jetzt zu äh zu Apollo oder zu den äh amerikanischen,sowjetischen Trägerraketen aufbauen oder auch und auch zu Weltraumforschung aufbauen und dann kommt es eben1962 zur Gründung der European Lounge Development Organisation, also der Elton zum Aufbau.Trägerraketen und dem äh ja Gegenstück oder äh dem Kompliment der komplementären Organisation, Organisation European Space Research Organisation, wo sich die WeltraumWissenschaftler äh äh zusammenfinden und diese beiden Organisationen arbeiten dann sozusagen separat oder parallelähm haben natürlich was miteinander zu tun, weil die Satelliten, die sich die Weltraumwissenschaftler ausdenken, die sollen dann eben mit den Trägerraketengeflogen werden, die die European Lounge Eveliment Organisation baut. Und ähm vielleicht das jetzt mal sozusagen als.Zwischenfazit, diese Phase 1962, 63, 64 wird dann zu einer schwierigen Geburt.Europäische Raumfahrt äh Kooperation, was einfach auch nochmal hindeutet auf,Probleme, die äh Europa zu diesem Zeitpunkt eben hatte und ich glaube, die Lernprozesse.Bedeutet Kooperation, äh wie kann man äh transnationale Zusammenarbeit in einem so komplexen Feld wie Raumfahrt aufsetzen, die Lernprozesse, die hier gegangen werdenmussten. Die waren schmerzlich, die waren schmerzlich für die Ingenieure und Naturwissenschaftler. Die waren aber auch schmerzlich für den europäischen Steuerzahler, der sehr viel Geld hier sozusagen hinblättern musste, um ähLernprozesse äh erfolgreich zu gestalten.
Tim Pritlove
Das heißt, man hat quasi erstmal ähm also mein meine ich habe ich habe die fünfzehn Jahre jetzt mal so salopp daher gesagt. Das war so ein bisschen meine Erwartung undtatsächlich passt es ja dann auch ganz gut so Anfang der sechziger Jahre. Das Apolloprogramm, glaube ich, 1undsechzig äh los, dann,dem sich die USA quasi wieder berappelt hat nach eben diesem Schock, also der letzten Endes nur von den Piepen eines einzigen Satelliten ausgelöst wurde.Rolle der Russen ist natürlich jetzt hier auch noch mal äh sehr, sehr relevant, die ja einen eigenständigen Weg geschafft haben, die aus ihrer eigenen äh Wissenschaft und und Technikentwicklung herausgeschafft haben, sich dort,platzieren oder.
Helmuth Trischler
Die hatten ja auch die deutschen Ingenieure äh sich sozusagen geholt.
Tim Pritlove
Ach so, die andere Hälfte so.
Helmuth Trischler
Die andere Hälfte, die da noch geblieben sind, die sind in einer Nacht im wahrsten Sinne des Wortes Nacht-und-Nebel-Aktionen äh,Operation hieß die wann war das August 1946? Sind all die, die also in der in der Ostzone, in der.ÄhBesatzungstour, sowjetischen Besatzungszone verblieben sind. Äh die Experten äh und das waren viele, äh die die ähm sind zuerst in sogenannten äh Konstruktionsbüros ähm versammelt worden. Der der Sowjets und äh dann sind die.Wahrsten Sinne des Wortes besoffen gemacht worden. Äh da gab's eine große Feier und äh die Pläne lagen sozusagen äh aufm Tisch und dann sind die äh abgezogen worden äh.
Tim Pritlove
Aber Peenemünde lag doch auch im Osten, also.
Helmuth Trischler
Im Osten, aber äh Werner von Braun und andere haben sich vorher wie viele andere in den Westen geflüchtet in die amerikanische Besatzungszoneweil sie wussten, okay wir wollen es nicht in die Hände der Sowjetsgeraten, aber viele andere Spezialisten blieben eben außen. Und diese wurden also zwotausend äh neunzehnhundertsechsundvierzig ähm äh nach Russland äh in die Sowjetunion ans Schwarze Meer äh ähm verschifft ähm und äh hatten da einige Jahre zurund äh das waren auch eben Triebwerkspezialisten, das waren Raketenspezialisten. Insofern gab's auch da ein Technologietransfer sozusagen von äh NS Technik,in sowjetische Technik, äh die Sowjets haben das dann bald selbst übernommen. Äh aber äh also insofern.
Tim Pritlove
So eine Infusion gab's schon, ja.
Helmuth Trischler
Das ist ein sehr schöner äh Begriff hier an der Stelle. Äh den gab es auch.
Tim Pritlove
Mhm. Diese Wissenschafts äh Kooperation.Über das Zerren und so. Ich meine, das sah, wenn man heute so auf Europa blickt, dann ist es immer einfach zu sagen, so ah ja, Europa wird sich nicht einig und ähm.Kriegen diese vielen Sprachen und Kulturen kriegen wir irgendwie dann doch immer nicht überwunden und auch in der Pandemie haben wir gesehen, wie sich wie sich die Problematik schnell so nationalisiert hat, weil es einfach keine gemeinsame.Sprache, in dem Sinne gibt. Es gibt keine.Gemeinsamen europäischen, politischen Themen, die in Europa, es läuft immer in jedem Land nach einem anderen Zyklus mit einer anderen Gewichtung, mit einem anderen Hintergrund, mit einer anderen Geschichte, einer anderen Bedeutung und es ist äh manchmal erscheint es einem.Schwierig äh sich Europa als ein ganzes ähm wirklich zu denken. Auf der anderen Seite ist ja eben diese Integration Europas.An so vielen Stellen auch schon wiederumso perfekt, dass sie manchmal erst gesehen wird, wenn sie wegfällt, wie wir das jetzt zum Beispiel beim Brexit äh sehen jetzt, wo gerade äh Großbritannien so ein bisschen seine Einzelteile äh zerfällt, weil ihnen einfach ja etwas verloren gegangen ist, was sie vielleicht soals Gesellschaft gar nicht mehr gesehen haben. Und die Wissenschaft scheint ja hier äh.Neben der Wirtschaft nimmt eine wichtige Rolle zu spielen. Natürlich ist auch Wissenschaft und Wirtschaft eng miteinander äh verbunden. CERN haben wir als Beispiel schon genannt. Diese Bewegung hin.Wissenschaft für Raumfahrt zu machen, die dann letztlich zu Eldo und Eso geführt hatWer war da die Triebfeder? Waren das dann die Franzosen? Es fehlen schon zwei französische Namen ähm war das eine Initiative der Deutschen. Wie kam wie kam es überhaupt dazu, dass man sich.Äh wieder treffen wollen.
Helmuth Trischler
Ja Sie haben's gut beschrieben. Äh zunächst mal die Triebkräfte, die Katalysatorenwahlen, die Naturwissenschaftler und Ingenieure, ja, die tatsächlich eine Vision hattenEuropa auf die Landkarte hier zu setzen und äh auch den Friedensprozess voranzutreiben, in dem äh Europa,jenseits der US-amerikanischen und sowjetischen,Bildung sozusagen einen einen dritten Komplex, der auf zivile Technik setzt ähm aufbauen. Das das waren deren aus der Erfahrung.Des Zweiten Weltkriegs heraus. Das waren die war die Motivation und dann ähm sind äh diese.Ja äh Wissenschaftler an die Politik herangetreten und dann kam's eben zu sozusagen zu einer Art äh Europäisierung unter nationalen Vorzeichen, äh Interessenvorzeichen.Frankreich und Großbritannien waren sicher die Treiber da und zwar aus aus einer politischen Logik heraus, die da hieß okay wir haben äh hier äh in in äh Raketenprogramme investiert und wir sehen,Das geht eigentlich über unsere Kräfte hinaus. Jetzt holen wir doch die anderen äh mit ins Boot und sozusageneuropäisieren unsere Programme. Da gab's äh in Großbritannien ein sagen wir mal fehlgeschlagenes, ein schlecht geplantes Programm. Eine Trägerrakete für.Äh kaum Waffen zu bauen, Bluestreet History äh und das war die erste und die wurde dann, also sozusagen eine Trägerrakete für äh äh Atomspringköpfe, die wurde dann,zivilisiert äh und äh und den und diesem sich formierenden europäischen Konsortium als erste Stufe angeboten. Ja, also die äh äh britische Regierungwollte im Grunde Kapital aus einem verfehlten Rüstungsprojekt äh schlagen und sagen, okay jetzt nehmen wir da noch ein bisschen Geld ein. Haben wir so viel da investiert und das das wird jetzt ein zu einer zivilen ähm zum zivilen Projekt äh umdefiniert und das bieten wir Europa an.Sollen die Deutschen bezahlen und sollen die Franzosen bezahlen.Das Gleiche war in Frankreich, das hieß äh Coralie. Das war dann auch ein äh äh Projekt ähm zunächst mal das Unterrüstungsvorzeichen aufgesetzt worden ist und der die Franzosen boten, das heißt zweite Stufe an.Brauchten sie noch äh Deutschland falls äh mit Zahlen der starker, potenter Partner und weitere Partner, aber insbesondere Deutschland und die Deutschen, denen wurde dann angeboten, die dritte Stufe zu bauen.Ja und dann ergaben sich also französische und äh britische ähm Politiker, insbesondere der britische Verteidigungsmiss. Wenn es,Peter Fonicraft äh Anfang 196zwo oder im Jahr 19zwo6und, diesem Scharnierjahr, der Ausbildung des äh Vereinten Europas in der Raumfahrt in Bonn die Klinke in die Hand und äh Fmassive äh Politik für diese Idee einer europäischen äh integrierten Raumfahrt ähmund äh Deutschland war da zunächst mal nicht entscheidungsfähig. Erstens Mal gab's es gab äh zu dem Zeitpunktnoch keine verrüchtige Zuständigkeit für die Raumfahrt, das äh äh ähm Vorläufer des heutigen äh also Bundesforschungsministeriums wurde erst geboren, man war nicht sprechfähigwar nicht sprechfähig, dann äh gingen also,die äh Briten um Franzosen ging zum Bundeskanzler, ging zum Wirtschaftsminister, ging zum Verteidigungsminister, ging zum Innenminister und überall bekam sie unterschiedliche Auskünfte. Je äh je nach Aerosurinteresse,dann ja da sind wir interessiert oder sind wir weniger interessiert und es war dann tatsächlich.Ardenau, der dann Machtwort sprechen musste und sagt, okay, jetzt brauchen wir eine abgestimmte wirDeutschen sind doch eigentlich die die Triebfedern für reden immer davon von der Integration Europas und jetzt kommen hier mal die diese äh immer äh eher äh schwierigen Partner.Auf uns zu und wollen.Uns damit ins Boot nehmen äh dann müssen wir doch da sozusagen äh handlungsfähig sein ähm und da äh ließen sich dann also auch die deutschen Expertenzunächst mal sehr sehr skepwaren, weil sie sahen, dass diese Blues Streak eigentlich sich nicht eignet für eine äh europäische Trägerrakete, dass man das ganz anders aufsetzen müsste und dass wenn,dieser Basis.Trägerrakete gebaut werden würde, dass die zu dem Zeitpunkt, als sie dann vielleicht einsatzreif sein würde, längst überholt sein würde, ja? Also die Deutschen wollten im Grundetechnologisch in die Zukunft springen und das überwinden, was äh ihnen die Franzosen und ähm.Engländer anboten, aber das war eben der Deal. Ja, man bekam nur diesen Deal und ähm immerhin bekam er die Aufgabe, was Neues zu bauen, die dritte Stufe, die es nicht gabÄh und und wo man sozusagen fortgeschrittene Technologien zum Einsatzbringen konnte und das war dann schon auch wiederum äh verführerisch oder war war war äh spannendund dann gab's also lange Gespräche mit den deutschen Experten, die sich dann also davon überzeugen ließen. Ja, wenn wir dann also diese dritte Stufe schon äh sozusagen hochenergetisch ansetzen, dann machen wir das.Äh wollen aber sozusagen gewahrt wissen, äh dass wir äh möglichst äh in der in der zweiten Phase dann in die Zukunft.Hineinspringen. Also ein sehr komplexer Deal und ähmwurde für die Niederländer und die Belgier und die Italiener noch mit ins Boot geholt, um den Satelliten oben drauf zu setzen und die die Bodenkontrolle äh zu verantworten und.Australien äh sollte da hast du sozusagen die Test äh äh Range äh zur Verfügung stellen den Woomerer, also sozusagen eben als britische.Britisches Gebiet sozusagen, da gab's noch nicht äh äh in Französisch-Guyana als den europäischen Weltraumbahnhof, sondern das war Woomer in in Australien. Also,ehemaligen ich sage mal einen Schießplatz, äh der der der Artillerie äh äh Australiens und in der australischen Wüste wurden dann die ersten Testversuche.Äh durchgeführt.
Tim Pritlove
Grad mal geguckt, alsoAlldauer war ja noch bis 63 Bundeskanzler, hätte es äh fast fast noch die Vermutung gehabt, dass er so in seinen späten Jahren vielleicht nicht mehr so der Richtige gewesen wäre, um solche Entscheidungen wirklich nach vorne zu bringen inFrankreich war's äh Josh äh Pompedu. Aber letztlich.Stand ja die Politik auch dahinter, hinter diesem Projekt und das führte dann zur Gründung der der SRO.
Helmuth Trischler
Das führte zur Gründung der ESO als als äh Weltraumforschungsorganisation, das war unkritisch, ja. Da also kritisch war's Eldo, ja? Äh also die Upin Lange die Trägerraketen äh Organisationen, weil das sehr viel stärkerPolitnationale politische Interessen im Vordergrund stand.
Tim Pritlove
Wer baut das.
Helmuth Trischler
Wer baut das Wirtschaft und vor allen Dingen ähmdas sogenannte fair return oder da Einzug hielt, also zu sagen wir zahlenin die europäische Raumfahrt ein und die Briten äh sozusagen zahlten durch ihre erste Stufe ein. Die Franzosen durch ihre zweite Stufe, die Deutschen zahlten netto, ist sozusagen Bargeld, wenn man zu will ein äh und dieses fair Return-Prinzip, das in der Raumfahrt so ähähm wie hast du zu seinem Sofa? Problematisch gewirkt hat, bedeutet eben, dann wollen wir möglichst viel wieder raushaben.An Aufträgen für unsere nationale Industrie. Wir wollen wir geben ein bisschen Geld rein, aber wir äh wir wollen eigentlich schon gar nicht so richtig unser Wissen da reingeben. Das halten wir eigentlich hinter der Braut-Brandmauer, wann immer es geht.Jaund ähm äh sozusagen die Europäisierung war eine sehr langsame und eine sehr verzögerte und äh im Grunde eine kontrollierte.Und und das äh.
Tim Pritlove
Dieser ganze Protektionismus, der da immer noch lebt.
Helmuth Trischler
Ganze Protektionismus, ja? Ja also sozusagen die äh die äh die das geistige Eigentum möglichst zu kontrollieren, um um die Zukunftsfähigkeit nicht in äh nicht nicht äh zu europäieren.
Tim Pritlove
Und sicherlich natürlich auch der die einfach die ja Vorbehalte den anderen Ländern gegenüber, mit denen man so viel Krieg äh geführt hat, so speziell natürlich Deutschland, aber auch die Franzosen und die Briten waren sicher auch nicht unbedingt immer grün.
Helmuth Trischler
Und dieses führte im Grunde zum technischen Scheitern äh der ersten äh.Europäischen äh Phase der der Raumfahrtintegration. Weil diese europäische Trägererei.Die dann aufgesetzt wurde und die bezeichnende Weise, ja, circa programmatisch Europa hieß. Ja, also die hieß.Einerseits Eldo A, aber sie ist eigentlich Europa, ja? Sozusagen da wurde die Europarakete im wahrsten Sinne des Wortes an den.Ähm und äh uns scheiterte kläglich und sie scheiterte eben an dieser an diesem sozusagen NationalisierungsVorbehalt und und ganz konkret zeigt sich das und dass es einen so wunderbare äh Geschichte, dass man sie immer wieder gerne erzählt. Sie sie zeigte sich eben.Ganz konkreten technischen Desaster, das also stattfand äh äh sich ereignete, als diese Test-Rak.Ersten Mal in ihrer kompletten Größe am äh am Start war. Ja, die erste Stufe äh wurde mehrfach sozusagen getestet und es waren mehr Fehlschläge als äh alles andere, genauso die zweite und daraus hat man ein bisschen gelernt und dann hat man endlich auch die dritte, also die deutsche Stufe dann mit drauf gesetzt und den italienischen Satellitenund an den Start gebracht und äh da sah also das war dann ähm neunzehnhundertsiebzig.
Tim Pritlove
Dann.
Helmuth Trischler
In Bumerang, äh und äh.Alle Hoffnungen richteten sich auf diese Rakete. Also Europa äh zum ersten Mal.
Tim Pritlove
Neu zusammengebaut.
Helmuth Trischler
Ready ja neu zusammengebaut im wahrsten Sinne des Wortes integriert. Dritter äh Dritter an den Start und äh schießt sich äh äh in die Zukunft der Raumfahrt. Und nach 26 Sekunden,zunächst mal erfolgreich aus äh explodierte die erste Stufe, ein paar Sekunden äh später die zweite Stufe und dann die dritte Stufe und was war was war der Grund? Der Hauptgrund war, dass äh die Briten, das war Malconi,in diese dritte deutsche Stufe ihre Telemetrie einbauen mussten und die Deutschen hatten überhaupt gar kein das war eine Blackbox, die sozusagen in der deutschen,angebracht war und die Deutschen hatten keine Ahnung, was da eigentlich äh sozusagen technisch vor sich,ähm und äh insofern stimmt äh stimmten einfach die die Verknüpfung nicht, die Telemetrie äh äh antwortete nicht aufeinander und äh und äh und das Ding explodiert.Weil ich sage mal die Briten nicht mit den deutschen Sprachen.
Tim Pritlove
Oder weil ihr weil nicht alle dieselbe Sprache gesprochen haben.
Helmuth Trischler
Nicht alle dieselbe Sprache sprechen wollten durften im Grunde äh politisch vorgegeben.
Tim Pritlove
Erinnert mich so ein bisschen an dieses äh Disaster, was war's? Äh eine Maß war's eine Maß äh Rakete,äh der Amerikaner, die letzten Endes daran gescheitert ist, dass an irgendeiner Stelle halt noch das imperiale Maßsystem verwendet wurde und nicht das metrische System so und dann.Brach's auch auseinander.
Helmuth Trischler
Aber da war's sozusagen noch willentlicher. Das war jetzt nicht nur äh sozusagen, weil man etwas nicht bedachte, sondern weil man das äh äh apriori so konstruierte, dass äh dass der eine nicht mit dem anderen spricht, im wahrsten Sinne des Wortes. Ähm und.
Tim Pritlove
Schönes Bild. So, Europa kann nicht funktionieren, wenn wir nicht eine Sprache.
Helmuth Trischler
Und und vor allen Dingen kann's nicht funktionieren, wenn die Politik der Wissenschaft und Technik ständig reinredet, ja.Das war die große ähm sozusagenLernkurve, die man doch laufen musste und da auf der sich dann sozusagen der Erfolg in der er in der zweiten Phase europäischer Raumfahrt in den 70er und 80er Jahren auf.Man die Eser ganz anders konstruierte. Diese Eldo äh da gab's immer sozusagen den Vorbehalt der Politik. Die die entschieden und äh die,neudeutsch gesprochen, Governance, der ähm der älter politisch dominiert währenddann die Governance der der Isar sozusagen von der Wissenschaft, von der letztendlich von der Autonomie der Wissenschaft undTechnik äh lebt, ja und das also man man muss die Entscheidungshoheit wieder zurückgeben in,wissenschaftlich und technische Hände in das Management, so wie sie die ESA heute aufgebaut ist. Dann gibt's sozusagen drüber den Ministerrat äh der äh der Beteiligten dieser Einrichtung und die finanzieren und besprechen die ähm.Politischen äh nicht.Konstruktion der der politischen Konstruktion die Details, aber nicht die technischen Details. Das ist das ist sozusagen in den Händen von Wissenschaften und Technik und das war die große Lernkurve. Ja und das und und zweitens, dass dieses fair Return-Prinzip äh nach Möglichkeit nicht,nicht greifen sollte, weil das immer wieder eine repolitisierung von Wissenschaft und Technik bedeutet.
Tim Pritlove
Das heißt, dieses European Launcher Developement organisation diese Eldo war eigentlich so der erste europäische Versuch und der ist eigentlich erst mal gescheitert, was dann vielleicht am Ende auch,gut war, aber das ist ja dann im Prinzip für sind ja die sechziger Jahre, während ja die Amerikaner mit dem Apollo-Programmihre großen Durchbruch äh feierten und die Russen jetzt auch nicht ganz unerfolgreich waren, auch wenn's äh erstmal nicht bis zum Mond gereicht hat.Europäer eigentlich im Wesentlichen mit sich selbst beschäftigt und ähm ja haben eigentlich nichts äh auf Kette bekommen. Also Eldo wurde 62 einberufen gegen 64 dann erst so richtig äh.An Staat und äh dann halt eben dieses Desaster mit der Europa äh Rakete, was dann.71 das letzte Mal ähm stattgefunden hat oder beziehungsweise nicht stattgefunden hat und dann.Hat Europa gesagt, okay, alles klar, so funktioniert's offensichtlich nicht. Wir müssen das jetzt alles wieder neu aufstellen und das war ja dann im Prinzip die Geburt der Esar.
Helmuth Trischler
Das war die Geburt der ESA. Also nach diesem äh vernichtenden Untersuchungsreport, wo alle sagen, okay so äh wir sehen's jetzt wirklich auch auf der technischen Ebene. So kann's nicht weitergehen. Wir brauchen eine neue Konstruktion, dann gab's einen sogenannten.Stiel äh indem man also die ISO äh ESO die funktionierte, weil da alsoda war die Politik in der Weltraumforschung äh in das Satelliten äh Missionsplanung war die äh Politik weitgehend außen vor. Da konnten die Wissenschaftler untereinander reden und und auch schön dem äh gelungenen Missionen aufsetzen, die dann mit amerikanischen Träger äh Raketen geflogen wurdenDas funktionierte gut ähm und äh das musste natürlich politisch ausbalanciert werden. Die äh.In äh ihre Interessen, die Franzosen hatten ihre Interessen, die Deutschen und so weiter und so fort und äh das zu harmonisieren war ein ziemlich schwieriger Akt dann 197172 aber auf,dieses Desasters, ja weil man äh sozusagen das war der Schlag äh äh kräftige Beweis, so geht's nicht weiter. Wir müssen was Neues machen und wir müssen, wie gesagt, Verantwortung rückverlagern in die Wissenschaft und so wurde dann in diesemStil zwischen der Mitgliedsorganisation, äh die ist er aufgesetzt und äh zu einer überlebensfähigen Organisation gemacht. Und dann konnte das Ariane-Programm.Werden.
Tim Pritlove
Wenn man jetzt, weil wir sprechen ja immer von Europa, so. Das damalige Europa war ja im Wesentlichen das westliche Europa und auch nicht.Raumfahrt Europa war ja jetzt auch nicht zwingend identisch äh mit dem,EU-Europa oder damals halt noch der europäischen äh Gemeinschaft ähm beziehungsweise zu dem Zeitpunkt war es wahrscheinlich noch nicht mal die europäische Gemeinschaft, sondern deren Vorgängerorganisation auf jeden Fall Europa hat sich ja äh.Quasi vielfältig entwickelt und wenn man auch heute so auf die ganzen einzelnen europäischen nicht nur die Raumfahrtorganisationen, sondern überhaupt was es so an,Vereinigungen äh so gibt in allen Bereichen anschaut. Ist immer so ein Flickenteppich. Ist mal irgendeiner. Ist nicht dabei. Das ist ja immer ganz anderes dabei und manchmal geht es auch ein bisschen über Europa hinaus und manchmal ist es wirklich extrem Kerneuropa.Klar, viel dreht sich halt immer um Deutschland, Italien, Frankreich und Großbritannien. Aber ähm.Wie war es denn bei der ESA? Also welcher europäische Gedanke steckte hier drin? Wer waren die treibenden Kräfte und wie hat man die anderen? Warum hat man noch andere Länder dazu genommen?
Helmuth Trischler
Ja sie haben Recht auch das Europa der Raumfahrt ist eines vonnenne das mal multiple Geografien der europäischen Raumfahrt äh äh Kooperation. Da gibt's äh das ähm äh Europa der ESA und es gibt ein Europa der nordischen Kooperation äh Raumfahrtforschungskooperation. Es gibtbilaterale Kooperation deutsche, französische Achse mit vielen ähm äh Projekten und da ist eines,wenn ich das so auch äh sozusagen antworten darf, dass ich so ein paar Geschichten erzähle, weil sie so instruktiv sind. Ähmund und doch auch Ihre Frage beantworten, weil die zwei Haupttriebkräfte äh der der Isar und der europäischen Raumfahrt äh Kooperation wie wie.Uns vor Augen haben, wenn wir an ähm große Brüh.Dann ist das Frankreich und Deutschland. Also zeigt das Sachsen-Europa ist auch in der Raumfahrt sind die beiden äh äh Triebfedern, die sozusagen die zentrifugalen Kräfte der europäischen Raumfahrt.Kooperation immer wieder einfangen mussten und kontrollieren mussten durch die sozusagen Elysee äh Achse äh in den 70er und achtziger Jahren.Ganz im im Speziellen drohte auch die Isar immer wieder auseinander zu fallen und es bedurfte dann auch sozusagen oberster politischer äh Protektion und da musste der Bundeskanzler äh mit dem französischen Staatspräsidenten reden.Um äh äh die Isar wieder zu stabilisieren. Können wir gerade Mitte der 80er Jahre ist da so eine Phase als das sogenannte Zukunftsprogramm der ESA ähm in einem komplexen äh.Politischen Prozess stabilisiert werden musste und auf auf die Schiene gehoben war, aufs Gleis gesetzt wurde. Wie sagt man das? Eigentlich ein falsches Bild, passt alles nicht. Ähm.Dass äh da brauchte es oberste politische Unterstützung und das war immer Frankreich und Deutschland. Also das ist schonschon die Achse. Aber wie gesagt, wir haben auch ein Europa ein äh der der nordischen äh äh,skandinavischen äh Kooperationen äh wo äh äh Norwegen äh und und Schweden und Finnland miteinander kooperierten. Und wir haben eben Bilatrale Kooperationen zum Beispiel im.Deutschland äh und.Frankreich, äh im Telekommunikations äh äh Bereich, die die ersten Satelliten, die hier aufgesetzt worden sind. Das waren immer unterschiedliche Geografien der europäischen Raumfahrt.Aber nochmal Deutschland und Frankreich sind die sind die zwei äh Achsenmächten. Äh der ich der der europäischen Raumfahrt äh.Zusammenarbeit. Ja, aber wie Sie sagen, es geht natürlich hinaus über das politische Europa. Da ist dann auch äh da ist dann äh Österreich mit eingebo,und da ist äh wird die Schweiz eingebunden. Ja und wir haben wir haben's ja generell gehört, da ist äh sogar Australien zunächst mal eingebunden und dann ist Französisch-Guyana eingebunden. Also insofern.Äh die äh Geografie äh Europas und des politischen Europas überhaupt nicht einher mit der der europäischen Raumfahrtkooperation und natürlich ist Europa immer wieder auch angewiesen auf die USA.Also die sozusagen eine europäische Raumfahrt arbeitet sich ab an der NASA.Ein Gegengewicht gegen die NASA aufbauen, äh wird aber immer wieder auch ähm sozusagen zu einer Kooperation mit den USA gezwungen. Das heißt, wenn die europäischen Trägerraketen nicht funktionieren, sei es im Postapolo-Programm,äh äh dann äh wo man äh gemeinsam schon mal in Richtung Raumstation anfängt zu planen et cetera. Und dann, Sie haben's äh genannt, gibt es natürlich das im Kalten Krieg das Gegenstück.Raumfahrtkooperation äh östlicher äh Manier sozusagen und das ist das Intekosmosprogramm, das die äh Sowjetunion aufgesetzt hat, um ihre Satellitenstaateneinzubinden in ein Kooperations äh Programm äh mit mit vielen, vielen äh gemeinsamen Aktivitäten.Jetzt äh ist natürlich die Frage, was ist das für eine Kooperation? Äh wie können wir die heuteaus der äh Rückschau äh betrachten, ist das eine Kooperation aufgleichem Fuse, so wie sie doch bei der ESA im Wesentlichen herstellt und die Deutschen mit den Franzosen und und Briten sozusagen auf Augenhöhe äh kopiert.Schon mit eigenen Interessen, aber es ist klar, jeder bringt sich dann doch äh äh zugunsten eines gemeinsamen Zieles ein,äh nein, das war natürlich in äh im Ostblock nicht der Fall, sondern da war die die klare Suprematie der der Sowjetunion, die die.Regeln, vorgab und die ihre Satelliten.Einband und äh sagte okay, ihr in der DDR macht das, ihr macht das Institut für Kosmosforschung, ihr macht die die Kamera, die und und äh,die äh die Tschechins oder die Tschechoslowakei macht das und das aufbauend auf auf ihren äh Kernkompetenzen.Und so weiter. Also ähm wir beschreiben das heute fast schon als sozusagen koloniale Kooperation, ja, sozusagen wir moderne äh äh Imperialismus oder Kolonialismus und die Sowjetunion ganz knapp ganz klar vorwer was zu machen hat und der Spielraum, der äh äh Comicron-Staaten, also Mitgliedsstaaten, das ist,äh sozusagen Wirtschafts- und Wissenschaftsverbunds im im Osten äh der war gering und die USA äh die Sowjetunion war soklar der Treiber und derjenige, der alles vorgab. Aber trotzdem in de Kosmos ist sozusagen das äh osteuropäische Gegenstieg Stück zur Esar im Westen.
Tim Pritlove
War also die Esa geboren und äh hatte natürlich das Ziel besser zu funktionieren als vorher. Die Politik hat die Leine etwas lockerer gelassener.Wissenschaft, da mischen wir uns jetzt mal nicht so äh ein, kooperiert ihr mal fleißig, äh aber wir müssen jetzt ja auch mal äh Ergebnisse erzielen als da sicherlich auch,ganze Geld, was da reingegeben wurde, wollte man natürlich dann Erfolge auch sehen. Wie hat denn die Eser dann quasi sich neu.Aufgestellt, als sie dann gegründet war und vor allem, wenn ich's richtig sehe, ist ja diese Eldo, diese Lautschalgeschichte mehr oder weniger aufgelöst und in die Isar über äh gegangen.Heute ist allerdings der ganze Raketenbereich bei Arianes-Bass äh angesiedelt. Wie kam's denn zu dieser Ausgliederung?
Helmuth Trischler
Ja, das ist, wenn man so will jetzt äh äh der technisch, der ökonomische Arm, ähder Esel, aber die ESA als als ähm Organisation, jetzt ist ja in sie hat die Headquarter in äh.Paris in und da ist sozusagen die General Sitz die Generaldirektion äh der ESA die dann eigentlich einen eigenen.Aufbauen kann, der unabhängig ist von den Mitglieds.Die eine eigene bürokratische Logik entwickeln können und die natürlich dann auch wiederum irgendwelchen politischen Interessen äh,müssen, indem nicht alle Organisationen,Paris konzentriert äh werden. Da ist die Generaldirektion, aber dafür sitzen die technischen äh Facilities an anderer Stelle. Die sitzen in Darmstadt. Die sitzen in äh Oberpfaffenhofen hier in der Nähe von München. Das Kontrollzentrum. Die sitzen in Nordwijk, äh in den Niederlanden, wo äh sozusagenäh im Wesentlichen der Technikkomplex äh verortet ist und so weiter und es gibt die S-Range und äh also es gibt Standort der europäische Kooperation, die über die Mitgliedsstaaten,um diese.Politische Architektur der Raumfahrtkooperation zu stabilisieren. Weil jedes Mitgliedsland dann doch eben schaut, wir zahlen so und so viel ein, was haben wir denn davon? Wir müssen um das vor unseren Steuerzahlern,rechtfertigen und da reicht sozusagen die philosophische Idee der europäischen Integration nicht aus. Irgendwas ökonomisches muss da auch zurückkommen,Trotzdem, es bleibt die Generaldirektionist sozusagen autark und sie kann die technischen Entscheidungen treffen. Sie ist berichtspflichtig gegenüber der Politik, aber die Politik.Direkt reinreden und äh dafür gibt's eine Arbeitsteilung. Die Politik ist wie gesagt im E im ESA Ministerrat repräsentiert und die trifft sich äh.Je periodisch treffen sich die jeweiligen äh Wissenschaftsminister oder zuständigen Ministerien um zu besprechen äh wie wie und was man finanziert.Aber was konkret gemacht wird und wie es gemacht wird, das ist eben der Vorbehalt äh äh von Wissenschaft und Technik.Ähm und und diese sozusagen komplexe Konstellation, die funktioniert einigermaßenund äh die gerät immer wieder sozusagen unter politischen Bewährungsdruck, wenn das Geld knapp wird, wenn man viel Geld einsammeln muss. Jetzt komme ich doch auf Mitte der 80er Jahre zu sprechen alseben die bemannte Raumfahrt ähm in Europa sozusagen ausgebaut wurde als dieInternational Space Station zur Entscheidung an Stand als viele als Ariane fünfals sozusagen zukunftsfähige Trägerrakete zur Diskussion stand. Da musste viel Geld auf den Tisch,äh werden und da bedurfte es dann also wie gesagt äh eigentlich des Eingreifens auch wiederum der deutschen und französischen ähm Regierung.Um äh die anderen Mitgliedsstaaten wieder ins Boot zu holen und zu sagen und gerade insbesondere die die Briten, die immer äh ja ein Auge drauf hatten, wie viel zahlen sie nach Europa ein und was kriegen sie zurück, um dieses Zukunfts äh Programm,aus der Taufe zu heben und wie es der Zufall will, war damals der Vorsitzende dieses ähm ESA Ministerrats.Deutsche äh Forschungsminister Heinz Riesenhuber, der dann ähm sozusagen.An die Hand genommen wurde, auch von seinem Bundeskanzler und sagt, du machst das jetzt und du bringst bringst dieses Programm an den Start.Und äh wie es der Zufall will, war ein Generaldirektor, der damalige Generaldirektor der Esar auch ein Deutscher, Reimanlüst äheben als Präsident der Max-Planck-Gesellschaft, der dann ähm äh nach Paris ging und die beiden konnten miteinander und haben das dann sozusagen dieses Zukunftsprogramm, wo vielesozusagen auch heute noch am Start äh befindlichen Module der europäischen Raumfahrt. Ariane fünf.Geboren wurden, äh oben das auf der Taufe, aus der Taufe und stabilisierten da die europäische Raumfahrt. Das war so ein Scharnier-Moment europäischer Raumfahrt.
Tim Pritlove
Aber es fing ja nicht mit der Ariane fünf an, sondern es war ja im Prinzip, weil die die eigentliche Wiedergeburt der europäischen Raumfahrt, die dann mal konkret durchgeführt werden konnte, war ja dann die Entwicklung der Ariane.Raketen, nachdem das ganze ELO-Projekt äh schief gegangen ist, ähm wurde dann halt neue Entwicklungen aufgenommen.Isar hat sich jetzt äh konstituiert, wann war das jetzt nochmal.27, genau und 79 flog dann die erste Areale. Das heißt, das waren dann erst mal so sieben Jahre, weitere sieben Jahre nach dem verlorenen zehn Jahren, die man im Prinzip noch mal.Weiter hungern musste, sprich Europa waren so unterm Strich mal grob gesagt, äh zwei Dekaden eigentlich zum.Nicht auf dieser Landkarte, auf der sie unbedingt immer sein wollte, während die anderen äh weitere Erfolge erzielten.
Helmuth Trischler
Das ist richtig, was die Träger ähmKonstruktion von Trägerraketen betrifft. Äh das sozusagen ist äh zu äh wird ein Kompliment her äh ist ist die WeltraumForschung zu sehen und da war natürlich Satelliten ähm Projekte schon unterwegs äh insbesondere auch in der Erdbeobachtungdie sozusagen Erfolge versprachen, die aber dann wie gesagt mit amerikanischen Trägerraketen zuerst beifliegen musstenund ähm und auch das war nicht einfach. Das zeigt sich bei einem mit einer deutsch-amerikanischen äh Kooperation Helios.Ein wunderbares Projekt äh zum Bau von zwei Sonnensorten, ja, also äh Sonden, die um die Sonne herumfliegen sollten.Und zum ersten Mal eigentlich im Grunde die die die Sonne äh der Sonne nahe kommen sollten um um die Sonne zu erforschen. Diese zwei Helios ist ja der griechische Gott äh der Sonne äh und äh das musste.Politisch auf die Schiene gesetzt werden und da.Auch sehr spannende Geschichte. Da flog äh der damalige Bundeskanzler äh Ehardt ähm Anfang der siebziger Jahreäh in die USA um äh mit der amerikanischen Regierung im Grunde eine Art äh.Was habe ich gesagt? Siebziger Entschuldigung, das war neunzehnhundert äh sechsundsechzig, siebenundsechzig flog äh Erhardt in die USA und mit dem äh amerikanischen Präsident Linie Johnsonund das war die äh das war so die ersteich sage mal Budgetkrise in der bundesdeutschen Geschichte, erste Wirtschafts kleine Wirtschaftskrise, 19sechsund6, 67 um ähäh zu verhandeln über eine Reduzierungder amerikanischen Stationierungskosten in Deutschland. Die Deutschen mussten bezahlen dafür, dass die Amerikaner äh so hohe Truppenkosten in Europa hatten, in Deutschland, insbesondere hatten und da wollte er äh Umstundung, sage ich jetzt mal, von Zahlungen äh.Äh Lyndon wie Johnson, die sind völlig auflaufen und bot ihm anNa ja gut, wir können mit euch eine Raumfahrtkooperation machen. Was was haltet ihr da davon, wenn wir euch dieses anbieten? Wir machen gemeinsam ein ein äh Experiment der Sonne äh Forschung und dann kam also ein äh ziemlich frustrierter.Bundeskanzler zurück und brachte das im Gepäck mit. Die deutschen Raumfahrtingenieure freuten sich und bauten das. Es flog dann 1975 beide beide Satelliten ähm waren sehr, war eine sehr erfolgreiche.Mission und das äh das Schwingungsmodell. Also wenn man so will, das Objekt, das am nächsten dem Original kommt.Steht heute in der Raumfahrtausstellung des deutschen Museums.Äh aber es zeigt einmal mehr wie wie politisch äh verknüpft dann doch Raumfahrtprojekte sind und immer wieder abhängig sind von äh von Interessen jenseits wissenschaftlich politischer Logiken.Und ähm,nochmal äh deswegen dauerte das auch länger in in Europa um um dieses europäische Raumfahrt immer wieder da äh sozusagen äh kontrollieren zu können und äh und und die politische Umarmung und Einlegungmöglichst äh einzudämmen. Aber Sie haben's genannt. Ähm äh europäische TrägererkeAriane besichtigt die Ariane Familie von Trägerraketen mal wirtschaftlich nicht nur wirtschaftlich, sondern auch technisch bewähren konnte, dauerte einige Jahre und insofern sind diese Satellitenmissionen sozusagen vorausgeeilt und haben zunächst mal gezeigtwas eine europäische Raumfahrt äh Kooperation kann, bevor ähm die Ariane-Familie an den Start ging.
Tim Pritlove
Also ich meinte ja so.Dass das quasi äh diese verlorene Zeit dann mehr oder weniger mit dem Start der Rakete dahingehend endet, als dass man eben eineklare Vision auf eine eigenständige Raumfahrt hatte, selbst wenn man natürlich viele Kooperationen macht. Die Zeit dazwischen, die mit Satellitenentwicklung genutzt wurde, hat ja dann auch letzten Endes der ESA die Nischen,quasi äh eröffnet, die sie heute ja auch noch wunderbar,füllt, also während natürlich die Amerikaner bei so den deep Space und Mond äh Explorationen lange Zeit ganz vorne waren, die Russen natürlich auch.Blieb dann quasi für die Esar dann so die Erde übrig und man hat sich so diese low owbit Mission ausgesucht und heutzutage ist natürlich die Erdbeobachtung so eingroßes, wichtiges Feld für die ESA geworden und hat natürlich auch als solche eine extreme Bedeutung, sodass es dann langfristig auch nicht unbedingt alles von Nachteil war.
Helmuth Trischler
Sehr gute Interpretation, die zeigt, dass äh äh Europa da also auch die Zeichen der Zeit nutzte, ja die siebziger Jahre sind die Jahre auch der Entdeckung der Umweltprobleme ähm.Ähm 19dreiundsiebzig Club of Froam ähäh Limits to crowd et cetera. Also die formierende Umweltbewegung, äh die die dann sozusagen ja auch sich zeigt in denin der Erde Beobachtung in den Umweltmissionen äh und da ist Europa führend geworden und sozusagen auszu ja wenn man so will, aus der Not heraus ein eigenständiges Profil.Entwickelt und also insofern sind diese verlorenen Kosten dann äh doch in sozusagen in ein äh eine erfolgreiche Lernkurve überführt worden und haben Europa.Grade in im im Bereich der Weltraumforschung nach vorne gebracht.
Tim Pritlove
Wo's ja dann richtig gut lief, war ja dann eben die die Ariane,Rakete oder die äh die Serie von äh Ariane äh Raketen, nachdem man das erste Mal geschafft hat überhaupt zu starten sich vor allem auch so einglaube sehr extrem beneidenswerten Startplatz geschaffen hat mit Corona ist es natürlich einfach mal so der beste Ort, den man so.Auf dem Planeten so finden kann für den Stadtplatz weil er einfach mit Abstand derjenige ist der am nächsten zum Äquator ist und von daher die Wucht der äh Erde am besten mitnehmen kann, was ja.Ganze Menge Spritsparte et cetera. Ähm das.Macht auf mich so den Eindruck als ob hier dann auf einmal alles sehr gut zusammengelaufen ist, dass diese ganze europäische Kooperation gut funktioniert hat, dass man äh die Ressourcen irgendwie klug genutzt hat, weil die Ariane.Fünf, die ja in gewisser Hinsicht so bis heute noch am am Ende dieser Entwicklung steht, auch wenn wir jetzt kurz theoretisch zumindest kurz vor der Ariane äh sechs sind.Dann so über zwei Jahrzehnte einfach auch bewiesen hat, jetzt nicht nur eine sehr leistungsfähige Rakete zu sein für die damaligen Verhältnisse, vor allem auch extrem zuverlässig. Also das ist einfach während die russische Raumfahrt ähm.Die Auswirkungen der neunziger Jahre nicht so gut verarbeitet bekommen hat und ja eine Serie von Kleinstkatastrophen äh aneinander äh hintereinander gelegt hat, die Amerikaner sich lange Zeit von,Space Shuttle äh Desaster nicht so richtig äh erholt haben und ihre Prioritäten wieder neu ordnen äh mussten. Das war ja dann im Prinzip eigentlich so die Phase, wo Europa dann seine Kraft auch voll ausspielen konnte und sich zu sein,äh den Platz auf der Landkarte jetzt aber auch wirklich mal mit einem dicken Edding äh markiert hat.
Helmuth Trischler
Das ist das ist alles richtig. Vielleicht äh mit der äh kleinen Einschränkung, dass dierussische Raumfahrt äh schon auch gezeigt hat, dass sie robuste Technologie äh machen kann. Vielleicht keine Advanced äh und und keine keine äh besonders innovativen, fortgeschrittenen Technologien, aber sehr leistungsfähige, sehr,äh wie sagt man da, das das gutmütige Pferd, äh dass es schafft äh da sozusagen klassische.
Tim Pritlove
Die Sojus hat halt hat auch gut gehalten.
Helmuth Trischler
Hat gehalten und äh hat dann natürlich auch sich schon ein ein äh auch nach der äh Transformation äh also nach Glas Nost et cetera sich schon auch ein einam Platz ähm äh am Markt der Trägerraketen gesichert ja und.
Tim Pritlove
Aber trotzdem gab's ja jetzt diese diese Phase, wo dann wirklich sehr viele Missionen äh verloren gegangen, sind Marsmissionen, die nicht geklappt haben, teilweise in orbindlich erreicht haben ähmam Startplatz explodiert. Also es sind eigentlich so die die volle Kette, die man äh.Nicht haben will, während halt in Europa eigentlich so über zwei Jahrzehnte lang alles einfach lief, so Ariane startet. Man konnte Urlauber stellen. Äh die kamen irgendwie pünktlich hoch und es gab äh selten Probleme.
Helmuth Trischler
Es gab selten Probleme. So ist es. Und ich ich glaube, dass äh ja, das ist ähm.Schon so zu sehen, dass das die Auswirkungen sind dieser Lernkurve ja heute sozusagen die Lessons learnt. Äh wie gesagt.Mit viel Geld, das versenkt worden ist äh und das in europäischen äh Steuerzahler Geld gekostet hat, aber man hat daraus die richtigen Konsequenzen gezogen und äh hat die äh ähm.Die adäquaten ähm äh Technologien aufgesetzt und ist tatsächlich geschafft, dieses schwierige Management und ich glaube, das ist die spezielle Herausforderung. Management von.Raumfahrtprogramm in den Griff zu bekommen. Ähm wir äh.Wir reden vom Apollo-Programm ähm das so als Erfolgsgeschichte dastehen,äh und vergessen dabei, dass wenn ich ihn noch mal auf Werner von Braun zurückkommedass das amerikanische Apollo-Programm äh Mitte der 60er-jahre im Grunde fast äh scheitern äh zu scheitern, drohte daran, dass im Grunde Werner von Braun seine Penemünde-Idee überzogen hat und ihn das Ap,implantieren wollte.Äh nicht realisieren wollte, dass er völlig überfordert war mit seiner Idee, alles unter einem Dach. Er hat seine paar tausend äh Peemünder, die ihm sozusagen zuarbeiten und alles noch kontrollieren, um mit dem macht er die Apollo.Ja und oder die die Saturn fünf. Das konnte überhaupt nicht funktionieren und scheiterte und es brauchte die amerikanische Airforce.Äh ganz andere Erfahrung hatte und ganz andere Kompetenzen hatte.Wie solche äh komplexen Projekte äh zu handeln sind, zu managen sind, nämlich durch contracting, ja. Da gibt man Boeing was und gibt man äh äh crumen was et cetera und.Sozusagen arbeitet mit äh mit verteilten Aufgaben und und und sozusagen.Das ganze Land ein in ein solches Komplett und die ganze nationale Industrie, in ein solch komplexes Projekt Mustern, aber dieses Projektmanagement handeln und sicherstellen, dass Boing rechtzeitig geliefert und dass äh no.Norbert Crumon äh äh rechtzeitig liefert und das alles sozusagen dann zu managen.Hatte die amerikanische Air Force mit ihren Großprojekten viel Erfahrung und das brauchte es.Um äh um um Apollo dann an den Start zu bringen und da wurde damals eigentlich Werner von Braun weitgehend ausgebotet, weil er nicht in der Lage war ein solches Modell anzubieten.Daraus haben die Europäer auch ihre Lehren gezogen und äh,eben dieses contracting was wir ja sehen Nordwijk was stattfindet, dass in Darmstadt was stattfindet, dass in ähm Oberpfaffenhofen, wir haben's genannt, was stattfindet und das zu einem gemeinsamen ähm sozusagenineinandergreifenden Räderwerk auf äh auszubauen und die Vorteile zu nutzen, dassdass Italien Kompetenzen hat und Deutschland spezifische Kompetenzen hat et cetera, die gemeinsam gebündelt eben dann zu einer Stärke führen. Das war die Stärke und das war dieÄhm das war die Voraussetzung dafür, dass das Ayanne-Projekt ein solch erfolgreiches Technologie-Kooperationsunternehmen geworden ist.
Tim Pritlove
Bringt mir auch einen interessanten Punkt. Das ist ja auch mehr äh äh das europäische Raumfahrtprogramm ja auch mehr ist als nur dieUnd ihre Standorte, sondern dass er auch hier äh im Prinzip eine entsprechende Industrie auch gestartet werden muss.Gibt ja auch noch ein zweites Erfolgsprojekt europäischer Natur, das äh Airbusprogramm und ja die erste große Konzern, der daraus hervorgegangen ist ähspielt ja auch in der Raumfahrt heute im Satellitenbau eine eine große Rolle. Ist auch nicht der einzige Player. Aber es ist halt auch über die Zeit gelungen, auch eine Industrie heranzuziehen, die in Europa auch in der Lage ist, eben nicht nuralso man hat nicht nur eine Organisation, die Missionen planen kann und Anforderungen machen kann, Instrumente bauen kann, sondern es müssen halt auch die Satelliten gebaut werdendie letzten Endes erfolgreich diese Mission ausführen.Bedeutungen haben diese Unternehmen und wie sind die in dieses politische Geflecht auch mit eingebunden, sodass estrotzdem auch noch ein privates Space sein kann.
Helmuth Trischler
Ja, das ist eine äh schwierige Frage, wo ist gar nicht so viel Forschung dazu gibt. Also gerade auch die europäische Industriekooperation.Die äh sowohl jetzt was Airbus betrifft ähm als auch was ähm Allianz Bass betrifft. Da ähm.Noch wenig wenig dazu bekannt, äh was da die die Problemlagen waren und da war's sozusagen wie diese Integration auch tatsächlich funktioniert hat unter unternehmerischen Vorzeichen. Ich will mal ich will mal so ein bisschen antworten, indem ich fürausweichend antworten, indem ich äh noch mal das Gegenbeispiel zeige, nämlich wie Raumfahrtmanagement in Deutschland funktionierte oder auch nicht funktionierte, um zu zeigen, welche Voraussetzungen eigentlich für Erfolg bestehen müssen.In Deutschland eigentlich bis zur Gegenwart. Ein riesiges Problem äh ein adäquates äh Raumfahrtmanagement.Gleisen und das ist seit Ende der oder seit der zweiten Hälfte der 60er Jahre so als als sozusagen Europa begann und als man auch in Deutschland nationale Projekte jenseits der europäischen Raumfahrt ähmaufzugleisen begann Azur war der erste deutsche Forschungssatellite et cetera, da brauchte man ja eine Agentur, die das managt.Und dann wurde äh verzweifelt nach möglichen Modellen für eine deutsche NASA sozusagen gesucht und äh dann hat man nach deutschem Gesellschaftsrecht eine GmbH zunächst mal gegründetist dann Gesellschaft für Weltraumforschung und da gab's zwei äh Teilhaber. Der der Bund.Als Mehrheitsgesellschafter und eine Privatperson, ein Bänker, der der äh zweite Gesellschafter war.Ein heillos gescheitertes äh Projekt, aber wurden dann Beamte eingestellt, die also Raumfahrtenmanagement betreiben sollte. Äh ich sage mal ehemalige Bundes äh Forschungs äh Ministeriumsreferenten.Funktionierte nicht. Da zog man 1969 dannAls insgesamt die Architektur äh institutionelle Architektur der der Raumfahrt und äh auch der Luftfahrtforschung in Deutschland verändert wurde und dasheutige DLR damals hieß das deutsche Forschungszentrum für Luft-und Raumfahrt gegründet wurde. 1968, 69.
Tim Pritlove
Heißt ja auch heute noch so. Deutsches Zentrum für Lufthut.
Helmuth Trischler
Damals dieses deutsches Forschungs-und Versuchsanstalt für Luft und Raumfahrt und jetzt ist das deutsche Zentrum äh DLR rausgewählt worden. Damals hieß es DFV LR sehr sehr äh.Schwierige Abkürzung.Naja, jedenfalls äh meinte man dann, okay, jetzt lagert man das Raumfahrtmanagement in diese neue Einheits äh äh Organisation der Luft- und Raumfahrtforschung in Deutschland ein. 19neun6und bis 72 war das dann der Raumfahrttechnische Bereich dieser DVLR.Und da sagte die Industrie, so kann das ja überhaupt nicht funktionieren.Ihr wollt uns am Start haben im wahrsten Sinne des Wortes und ihr in der Wissenschaft kontrolliert, dass ihr habt doch ganz andere Interessen und ich habe ganz andere Erfahrung. Ihr wisst doch gar nicht, wie das geht.Also auch das scheiterte wieder und dann ähähm gab's so eine Zwischenphase, wo es wieder in die Industrie hineinverlagert wurde und schließlich gründete man wiederum eine deutsche Agentur für Raumfahrtangelegenheiten in den 80er Jahren und das waren wiederum eher äh äh sozusagen Beamte.Also dann Raumfahrtmanagement betreiben sollten, hat man tatsächlich einen ehemaligen Referenten aus dem Bundesforschungsministerium geholt, der dann also der Präsident dieser Dara, deutsche Agentur für Raumfahrtangelegenheiten war,wieder heillos gescheitert. Die Industrie war nicht mit einverstand.Über diese Beamte des Struktur des Raumfahrtmanagements, dann hat man die wieder abgewickelt unter hohen Kosten, dann hat's wieder zurückverlagert in das heutige DLR hinein et cetera. Also das waren viele Versuche gescheiterte Versucheadäquates Raumfahrtmanagement äh Wirtschaft und Wissenschaft äh zu integrieren und mit der Politik als finanziert sozusagen hinzustellen. Alsoich nenne das als Negativbeispiel, um ihnen zu zeigen, wie wichtig eine adäquate,Verflechtung von Wissenschaft und Wirtschaft und politischen Fortzeichen ist im Raumfahrtmanagement ähm äh und äh.Wie ähm wie sehr dann sozusagen die ESA mit ihrer Kompetenz das äh auf sozusagen zu manage äh davon absticht.Und dieser nur nochmal diese Erfahrung und diese Erfahrung, die war schmerzlich Anfang der äh in den sechziger Jahren, aber dann hat man die Konsequenzen gezogen, hat das richtig hat das artig Querquad auch unter Nutzung der industriellen.Aufgesetzt und hinzu kommt natürlich, dass sich auch die europäische Raumfahrt äh Industrie aus sich heraus europäisierte, sozusagen in der.Richtigen Erkenntnis, äh äh dass äh der Markt in dem Bereich zu klein ist, um für Unternehmen.Erfolgreich äh auf nationale Ebene erarbeiten zu können. Auch da braucht man sozusagen ein ein ein eine Bündelung europäischer Interessen und vor allen Dingen Ressourcen und Kapazitäten um am Markt bestehen zu bleiben.
Tim Pritlove
Management wird jetzt, glaube ich, in Deutschland vor allem vom DLR, von der Rundfahrtagentur durchgeführt. Das scheint ja ganz gut zu funktionieren soweit.
Helmuth Trischler
Nach nach vielen vielen äh Fehlschlägen.
Tim Pritlove
Anläufen sozusagen.
Helmuth Trischler
Anläufen, genau und äh da irgendwann mal, glaube ich, hat man's geschafft, da doch sozusagen an einem Strang zu ziehen und da und äh und das adäquat aufzusetzen und zu zeigen, die die äh nah sein äh auch in Deutschland irgendwie.Hinzubekommen.
Tim Pritlove
Die Entwicklung ging ja dann äh für die Esa von den einfachen Satellitenmissionen auch äh dann über zur.Zur Beteiligung an der ISS. Das war ja dann schon ein,großer Schritt, würde ich sagen für die ESA, weil sie ja damit gemeinsam mit der Jackson und den ähm Roskosmos und eben den der NASA ja quasi so eigentlich so,Teil des Leuchtturmprojekts der Raumfahrt schlechthin äh kann man sagen äh geworden ist. Und heute äh scheint mir die ESA vor allem auch.Sehr viel besser vernetzt zu sein. Das ist auch das, was hier aus vielen Gesprächen immer wieder herauskommt. Amerikaner machen immer alles gerne äh.Natürlich auch bei vielen Sachen äh nicht nur mit der ESA, ganz klar, aber zum Beispiel zu den Chinesen eine gewisse äh Distanz und wenn Russen das,würde ich sagen jetzt komplikated äh so ja also klar bei der ISS ist man noch zusammen aber es gibt viele.Berührungsprobleme und ich habe immer so den Vorteil, dass Europa äh,aus dieser zweiten Reihe heraus, aus die sie gestartet sind, aber auch eben mit den eigenen Erfahrungen dieses interkulturellen Mischmaschs des Europa halt einfach immer noch ist. In gewisser Hinsicht so eine Resilienz entwickelt hat, äh aber auch so eine so eine Fähigkeit entwickelt hat, dann doch dieseVernetzung auch mehr in sich hinein zu tragen und damit kooperativer nach außen zu wirken. Das ist lässt sich das irgendwie.Bestätigen oder herauslesen.
Helmuth Trischler
Lässt sich bestätigen und ich glaube, da ist in der Tat die Stärke Europas äh äh besteht darin, dass sie transnational äh agieren und aus der Umklammerung der.Selbst stärker heraustreten als das in den USA ist. Die NASA sitzt am Ende doch äh hängt am Gängelband der.Ja, sie ist abhängig von von äh äh Kongressbudgets. Jedes Jahr muss das NASA-Budget, äh wie wir's jetzt auch dieser Tage wiedererleben, wovon einem Shutdown äh in in den USA die Rede ist, neu genehmigt werden. Also der Kongress kann die NASA gängeln, wie er möchteund äh auch die, ich sage mal die äh Prolieferationsund die die die Intellektuell äh Intellektual-Propact-Problematik ist in den USA so, dass es äh die amerikanische äh sozusagen Vorbehalt äh Wissen äh in internationalehineinzugeben,immer da ist, ja und und man genau schaut, mit wem man äh zusammenarbeitet und dass äh die Kontrolle am Ende in den USA,und äh diese Vorbehalte begab's dann in Europa eben nicht mehr. Das ähm da war die ESA unabhängig von äh nationaler Gängelung, äh weil es sozusagen die Supra äh Regierung in Europa ja nicht gab und und und,autonomie sozusagen in in Paris äh hier ähm.Lag und immer noch liegt und das ist der große Vorteil. Was wir heute äh ja sehen, ist dann eher, dass es eine Art von Konkurrenz gibt jetzt äh.In den letzten Jahren darüber, wer wirklich das Sagen hat, ob's die Europäische Kommission.Oder ob es die ESA ist und hier sehen wir äh sozusagen es könnte auch ja eine Konstellation geben, wo die ESA äh dann doch sozusagen der Rationalität der Europäischen Kommission äh zu,gehochen hat und der und die Europäische Kommission versucht diesen sozusagen Zugriff auf die Esar schon seit einigen Jahren. Die ESA widersteht ihm und und hättedagegen, aber eine solche, sozusagen neue Konfigurierung der Raumfahrt in Europa ist viel diskutiert wordendas das da ist sozusagen äh natürlich auch ein Lockmittel da, ja, dass man jetzt mal unabhängig wird von diesem Esel Ministerrat, wo man immer wieder Kompromisse schließen muss, was die Finanzierung betrifft und wenn man das sozusagen jetzt von der von der Europäischen Kommission bekommt aus dem.Haushalt ähm aus dem riesigen Haushalt der äh Forschungshaushalt der Kommission, ja? Äh der der der jetzt im im im neuen Rahmenprogramm ähm Horizont, was ist der? Achtzig Milliarden äh et cetera. Das ist natürlich sozusagen diedas Lockmittel des großen Geldes, aber bisher hat die ESA dem widerstanden. Ich glaube aus guten Gründen widerstanden sich sozusagen zurück äh.Zurück zu integrieren in in die große europäische politische Erzählung.
Tim Pritlove
Und in gewisser Hinsicht ist ja auch die ESA gar nicht mal nur europäisch. Ich meine, er hat das europäische im äh im Namen, aber äh.Abgesehen von den Kooperationen gibt's ja auch noch die assoziierten Mitglieder. Das ist ja unter anderem auch Kanada.Man hat so den Eindruck, dass äh die ESA in gewisser Hinsicht auch zu so einer Isar werden könnte, zu so einer internationalen Space äh Sociation. Ähm.Trotzdem ist natürlich dieser EU-Move ganz interessant, also es gibt ja jetzt vor allem zwei große Initiativen, die von der EU angestoßen wurden. Auf der einen Seite Galileo, das ist ein Navigationssystem.Was von der EU finanziert wird undauch das äh Programm der Erdbeobachtung. Das ist ja auch sehr umfangreiche, langfristige strategisch auch äh sicherlich äh wichtige Sachen. Ist der Einfluss der EU dann an der Stelle.Eher hilfreich oder eher problematisch oder eher beides.
Helmuth Trischler
JaWürde doch sagen wie immer beides. Äh insofern also natürlich auch zusätzliche Möglichkeiten eröffnet. Zusätzliches Geld und ich glaube die noch mal die Stärke Europas liegt in dieser,Geografie. Das ist eine ähm dass es eine Esar gibt, aber daneben unterschiedliche Formen der Kooperation, bilaterale Projekte, multilaterale Projekte. Wir haben jetzt äh vor.Vorher gesprochen von einem Europa, der einem nordischen Europa der Raumfahrt äh Kooperation. Man steht nicht nur die europäische Raumfahrt.Nur auf einem Bein, sondern sie hat multilaterale Möglichkeit, ein multivalente.Und äh und dazu kommt jetzt kommen die Initiativen der Europäischen Kommission. Sie haben zwei da zwei wichtigsten genannt und ich glaube, das ist die Stärke, das ist das ist dieses multiple Europa der Raumfahrt äh zusammenarbeiten.Und nicht.Nur den einen großen Player, der ist wichtig und der ist äh äh historisch äh dominant. Äh die ESA und äh ganz toll aufgestellt äh und doch gibt es äh komplementäre Programme. Das ist die Stärke Europas.
Tim Pritlove
Sind wir so ein bisschen schon fast in der Gegenwart angekommen. Das ist ja jetztgar nicht ihr äh Expertisen äh fällt, aber vielleicht auch mal so aus dieser ganzen äh Erfahrung der Geschichte heraus und wie sich das jetzt abgezeichnet hat.Was sind so die Chancen der europäischen Raumfahrt jetzt auch weiterhin gut mitzuhalten. Wir haben jetzt gesehen, dass die.Ganze technologische Entwicklung sich mittlerweile so konsolidiert hat, dass eben auch Firmen.Natürlich SpaceX zu nennen. Wir werden aber auch nochweitere Container glaube ich äh sehen in den nächsten Jahren, die noch stärker werden können, vielleicht auch in Europa.Gehe halt einfach diese ganze Abhängigkeit von Launching ähm ganz neu definiert, die hohe Zahl an Starts, die hohe Zuverlässigkeit, die Wiederverwendbarkeit von äh Raketen spielt ja eine große Rolle und jetzt steht Europaden Launscher Teil betrifft, der dann doch auch auf einmal wieder ein bisschen schlechter da. Ja, man hat Probleme mit der Ariane sechs, die Ariane sechs ist halt auch so einpolitischer Kompromiss gewesen, der so ja die einen wollten das und die anderen wollten das und dann kam man irgendwie da äh gerade auf dieser wichtigen Frankreich-Deutschlandachse nicht so richtig, dazu überein, zu sagen, lass doch mal die Wissenschaft machen, sondern es wurde eben nicht einfach die Wissenschaft äh äh,freigelassen und konnte tun, was sie für richtig gehalten hätte, was vielleicht auf ein anderes Design hinausgelaufen wäre und jetztvor der Situation, dass man mit der Ariane sechs quasi eine neue Generation hat, die eigentlich schon veraltet wirkt in dem Moment, wo sie das erste Mal starten.So und man hat auch jetzt grad nicht so den Eindruck, dass man so mit diesem Speed, den die Amerikaner äh da jetzt an den Tag legen, irgendwie nennenswert noch mithalten könnte. Das ist ja schon in gewisser Hinsicht auch eine Bedrohung dieser Eigenständigkeit.
Helmuth Trischler
Das alles richtig was sie sagen große Raumfahrt,äh Kramme und Projekte wie die Ariane sechs sind am Ende eben doch von Ressourcen nach von dem Zufluss von Ressourcen oder die Ressourcen kommen, äh nicht aus der Wirtschaft, die kommen aus der Politik. Die Raumfahrt ist eineund Trieben und staatsnah nach wie vor staatsnahe Technologie, auch wenn die Kommerzialisierung der Raumfahrt jetzt ansteht und viel darüber geredet wird und äh wir erleben's ja in diesen Tagen.Wochen und Monaten, äh wo es sozusagen jetzt amerikanische privatwirtschaftliche Unternehmen äh der der NASA-Konkurrenz machen und ihr das äh jedenfalls in der öffentlichen Resonanz äh den den Rang ablaufen, also die Kommerzialisierung der Raumfahrtist ja ein ähm ein ein historischer Prozess, ein Prozess, derseit Jahren diskutiert wird, ja Jahrzehnten diskutiert wird, ich erinnere mich an die an die neunziger Jahre, da hat man schon viel über Kommerzialisierung der Raumfahrt geredet und jetzt greift sie tatsächlich äh einmal und wir sehen's ja auf vielen Ebenen, nicht nur auf derauf der viel zitierten Ebene der Teflon-Pfanne et cetera, dass wir sozusagen Spin-Offaus der Raumfahrt im Alltag erleben, sondern eben auch sozusagen Missionen äh äh Weltraummissionen sozusagen plötzlich zugänglich werden, wenn auch.Nur für ein paar Superreiche äh Personen auf dieser Welt äh.
Tim Pritlove
Tourismus.
Helmuth Trischler
Der Tourismus, der dann auch so auch unter ökologischen Aspekten ziemlich fragwürdig ist. Aber vielleicht führt uns genau dieses Stichwortdann doch auch wiederum zu einer Stärke und zu einem profilgebenden Faktor EuropasGlaube in der Umweltforschung, in das Satelliten, den Satellitenmission, die äh äh das.Bewältigen äh was wir heute insbesondere brauchen, den Klimawandel zu bekämpfen et cetera, ist Europa steht Europa gut da und die sind die sind.Gleisigkeit, die ähm.Europa seit den 70er Jahren, seit der sozusagen ESA-Gründung gefahren ist, sowohl Trägerraketen zu konstruieren als auch in der in den in den Raum, in dem Weltraummissionen äh stark zu sein. Sei es jetzt für die ähkosmologischen äh also für die Kosmosforschung wichtigen Planet äh Planetenforschung oder und et cetera wichtigen ähm.Mission als auch die Erdbeobachtungsmission ähm äh zu betreiben und und hier ein Profil zu entwickelnmit äh mit der mit der Integration von äh außen ohne Witze, Forschung in den Max-Planck-Einrichtungen, äh Institut der Max-Planck-Planck-Gesellschaft et cetera. Das ist auch eine starke Europas oder das ist vielleicht,Europas jenseits der Kommerzialisierung geblieben und ich denke, äh in in der jetzigenKonstellation ja sozusagen Transformationskonstellation in der man uns hinten nämlich uns sozusagen im Zeitalter des Anthropozäns mit Planetaren Perspektiven bewegen zu müssen hin zu äh derder der Lösung der großen,Planetaren, Probleme, Klimawandel, et cetera, Biodiversitätsmonitoring ähm ist die ESA gut aufgestellt und ist Europa gut aufgestellt.
Tim Pritlove
Keinen besseren Moment äh hier das Gespräch zu beenden, Herr Tischler. Vielen, vielen, vielen Dank für die,ähm zur Geschichte der europäischen äh Raumfahrt und ich kann allen empfehlen, dass wenn jetzt hier im Mai die Ausstellung auch wieder äh eröffnet ist, dann äh auch mal hier ins deutsche Museum.Rein zu äh schauen. Ich werde die Gelegenheit sicherlich äh wahrnehmen, wenn sie sich dann äh neu bietet. Ja, um dann äh auch hier nochmal einen anderen Blick äh zu bekommen.
Helmuth Trischler
Darauf freuen wir uns.
Tim Pritlove
Ja. Vielen vielen Dank und vielen Dank fürs Zuhören bei äh Raumzeit.

Shownotes

Glossar


RZ097 Wettersatelliten

Die europäische Satellitenfamilie zur Messung der Wetterphänomene

Die europäische Organisation EUMETSAT ist der europäische Betreiber von Wettersatelliten und Datendienstleister für die Wetterdienste und die Wissenschaft. EUMETSAT steuert von seinem Stammsitz in Darmstadt die Flotte der Meteosat- und MetOp-Satelliten und ist im Rahmen des EU-Programms Copernicus auch Teil der europäischen Erdbeobachtungsmissionen. Wir sprechen über die Entwicklung der europäischen Wettersatelliten seit den 70er Jahren und die die heutige Flotte von EUMETSAT zur Beobachtung der Wetterlage, wie neue Systeme geplant und schrittweise eingeführt werden und welche zukünftigen Herausforderungen für die Wetterbeobachtung anstehen.

Dauer:
Aufnahme:

Cristian Bank
Cristian Bank

Wir sprechen mit Cristian Bank, Direktor für die Entwicklung neuer Satellitensysteme bei EUMETSAT über die Entstehung des Meteosat-Programms und der Geburt der EUMETSAT-Organisation.


Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Tim Pritlove
Hallo und herzlich willkommen zu Raumzeit imüber Raumfahrt und andere kosmische Angelegenheiten. Mein Name ist Tim Pritlove und ich begrüße alle zur Ausgabe 97 hier bei Raumzeit.Wo äh ich weiterhin wild auf Reisen bin und heute hat mich der Weg nach Darmstadt geführt.Manche Leute schon denken, ja Darmstadt kennen wir schon. Nee, weit gefiel. Darmstadt hat ja noch eine ganze Menge mehr zu bieten, aber ich bin nur wenige Meter davon entfernt.Nicht im europäischen Raumfahrtkontrollzentrum, sondern ein paar Meter weiter beim Eumetsat.Und was das ist und was ist äh das alles so macht und kann und tut, darüber spreche ich jetzt mit Christian Bank. Hallo, herzlich willkommen bei Raubzeit.
Cristian Bank
Ja hallo, Tim, grüß dich.
Tim Pritlove
Ja Christian, du bist hier ähm bei ist die Organisation, die die europäischen,Satelliten betreibt. So kann man das, glaube ich, mal grob umschreibeneine äh etwas eigenständige äh Organisation, die so neben den ganzen anderen internationalen europäischen äh Organisationen in der Raumfahrt wie der ESO oder der ESA existierte nochmal so seinen ganz eigenen äh Kosmos äh macht.Bisher genau wofür zuständig.
Cristian Bank
Bin hier bei der Direktor für die Entwicklung von neuen Satellitensystemen.Das heißt, äh wir schauen in die Zukunft, was wir in Zukunft an Daten brauchen, definieren dann neue Satelliten und neue Instrumente und die entwickeln wir dann zusammen mit der europäischen Raumfahrtagentur.
Tim Pritlove
Mhm. Super. Bevor wir in die Zukunft gucken, würde ich ganz gerne ein bisschen äh in die Vergangenheit äh schauen. Deine konkrete eigene äh Vergangenheit. Was ähm hat dich denn auf diese Spur in die Sterne äh gebracht?Schon immer dabei gewesen.
Cristian Bank
Bin tatsächlich ein äh ein eingefleischter Raumfahrt-Nerd. Bin jetzt aber relativ spät erst zu dem Thema ähm meteorologische Satelliten gekommen,Mal angefangen äh in der Kindheit mit Astronomie und bin dann sehr schnell,und den Viking zu Mars gelandet und habe mich sehr dafür interessiert, warte zuerst in den astronomischen Raumfahrten der wissenschaftlichen Raumfahrt. Und ähm das habe ich eine ganze Weile sehr intensiv verfolgt,und bin dann aber bald nach dem Studium, als ich äh angefangen habe zu arbeiten,zur bemannten Raumfahrt gekommen. Damals war das Thema Spacelab und Space Shuttle ganz intensiv diskutiert in Deutschland.Und das hat mich dazu gebracht, ähm in die bemannte Raumfahrt hineinzugehen. Ich habe damals studiert bei Professor Ernst Messerschmidt in Stuttgart.Und das war ja ein früherer deutscher Astronaut, der damals aufs Spacelab geflogen ist und äh der hat mir sozusagen nochmal einen kleinen Schubs gegeben in die bemannte Raumfahrt. Ich habe dann sehr lange,mitgearbeitet an der Entwicklung der internationalen Raumstation an Kolumbus an dem Modul. Damals war ich in Bremen und ähm,Ja und dann von dort aus als das Kolumbusmodul gestartet war und lief an Bord der Raumstation,bin ich dann über verschiedene Stufen zum Beispiel Raketenweiterentwicklung der Ariane, aber auch äh bemannte Vehikel, ATV et cetera,dann schließlich hier gelandet und jetzt bin ich hier bei eben für die Entwicklung von meteorologischen Klimasatelliten zuständig.
Tim Pritlove
Ganz gut rumgekommen. Was war das für ein Studium Physik.
Cristian Bank
Nee, das war tatsächlich Luft- und Raumfahrttechnik.
Tim Pritlove
Raumfahrttechnik an der äh.
Cristian Bank
Uni Stuttgart in Vaying.
Tim Pritlove
Uni Stuttgart. Alles klar.Okay, aber dann doch schon äh ziemlich straight forward eigentlich in diesem Bereich äh reingegangen und ein bisschen über Pingpong dann letzten Endes hier äh gelandet.Ja die Wetterbeobachtung ist ja so ein bisschen so ein so so der Klassiker.Ähm unter den Raumfahrtenmissionen würde ich sagen, das ging ja schon relativ früh los. Und.Das Interesse am Wetter war ja auch schon immer groß. Nicht wahr? Also das ist ja so die eigentlich so die klassische Zukunftsvorhersage, ne? Also wenn man über die Zukunft redet, dann redet man irgendwie über das Wetter.Das ist das ist so das, was alle interessiert. Das ist natürlich auch einen praktischen Nutzen, auch über so den täglichen hinaus, ist es halt einfach auch fürAgrarindustrie sehr äh wichtig. Der Bauer hat's schon immer an den Wolken gesehen, wie es in den nächsten zwei Wochen wird, aber das Gefühl haben auf der einen Seite nicht anderer aller und man wollte ja dann auch äh etwas,Daten äh bekommen. Diese ganze Wetterbeobachtung istist wahrscheinlich so alt wie die wie die menschliche Zivilisation würde ich sagen, ne. Aber dass die Technik dortäh Einzug gehalten hat, ist ja eigentlich auch eher ein jüngeres äh Phänomen so. Ähm und es ist ja vor allem auch noch Technik, die ja das, was hier bei Omez hat, äh gemacht wird.Begleitet ja auch noch eine eine wichtige Rolle spielt, also Messstationen an den verschiedensten Orten, ähm Wetterballonsund jetzt weiß ich gar nicht, ob ich noch irgendwann eine ganz wichtige Basistechnologie an dieser Stelle äh vergessen habe, bevor es in den Orbit geht.
Cristian Bank
Also wenn wir Wetterstationen sagen, sind das natürlich die Stationen an Land, aber eben auch Bojen,Wir haben ja 70 Prozent der Erdoberfläche mit Wasser bedeckt. Das heißt, dort haben wir Wetterstationen auf den Meeren. Leider nicht so dicht wie an Land. Und wenn wir äh in die Atmosphäre gucken, dann haben wir neben den Wetterballons zum Teil auch noch Höhenforschungsraketen.Aber das ist im Grunde genommen schon eine sehr gute Übersicht. Also äh die äh die Messinstrumente äh hier am Boden,die wir sehr kontinuierlich betreiben können und ablesen können,ähm die aber daran gebunden sind, dass letztlich ähm ja eine Verbindung irgendwo in Netzwerke besteht, dass wir die automatisieren können. Früher waren das einfach Barometer, Thermometer, jetzt sind das sehr komplexe Messstationen,und äh diese Systeme, die in die Höhe gehen, also in die Atmosphäre und versuchen Messdaten aus verschiedenen Höhenregionen der Atmosphäre zu gewinnen.
Tim Pritlove
Betreibt denn sowas? Auch?
Cristian Bank
Nein, da sind wir nicht engagiert. Wir konzentrieren uns tatsächlich auf die nächste Dimension dann, nämlich von oben runter zu gucken,von oben auf die Atmosphäre zu gucken und entweder äh auch Höhenprofile ähm zu gewinnen in der Atmosphäre oder eben die gesamte,gesamte Säule der Atmosphäre zu durchleuchten und ein Gesamtmesswert da zu bekommen.
Tim Pritlove
Was sind denn so die die Dinge, die heute gemessen werden? In an all diesen Orten, also Barometer, klar, Luftdruck hatten wir schon, Thermometer, die Temperatur, das sind so die die naheliegenden äh Dinge, äh Wind äh sicherlich äh auch.
Cristian Bank
Windgeschwindigkeit, Luftfeuchtigkeit und so weiter. Ähm das sind alles äh Parameter der der atmosphärischen Physik, also der klassischen Thermodynamik,ähm die hier eine ganz große Rolle spielen, ähm wie sich die Atmosphäre lokal ähm aber auch auf auf äh größer räumigen Skalen, also äh Kontinentalweit bis eben zu global entwickelt.
Tim Pritlove
Und ähm ich hätte jetzt ich habe es deshalb gefragt, also ist ja klar. Da steht's äh ja schon im Namen, nicht weil hier geht's einfach äh primär um Satelliten. Ich dachte nur geradedass das vielleicht auch das Zusammenspiel mit diesen Bodenstationen zur Kalibration oder so der Satelliten auch jetzt nicht ganz unerheblich äh sein könnte. Ist jetztso eine Vermutung.
Cristian Bank
Ja, absolut. Doch doch, also das muss man äh ganz klar festhalten, dass äh man Satellitendaten nicht isoliert,irgendwie nehmen kann, sondern dass die Kalibrierung äh mit den,real gemessenen Daten hier am Boden ganz wichtig ist. Wir haben auch äh wenn wir einen Satelliten in Betrieb nehmen, da kommen wir vielleicht nachher noch drauf,sehr lange Kampagnen der Kalibrierung, wo wir die Instrumente an Bord des Satelliten abgleichen mit den Messwerten, die wir hier am Boden gewinnen, sodass wir sicher sein können, dass das, was wir über einer Messstation.Kommen, wo wir wissen, das ist der genaue Wert, dass das eben auch,Wert ist, wenn wir übers Meer fliegen, wo keine Messstation ist, wo wir also diese Kalibrierung nicht machen können, aber uns drauf verlassen können, dass der vom Satelliten gemessene Wert eben dort auch stimmt. Diese Kalibrierung ist ganz wichtig und ich denke auch, dass für die äh Meteorologen,Ähm viele, viele Daten in ihre Wettermodelle einfließen und insofern sind Satellitendaten eben nur ein Teil dessen.
Tim Pritlove
Als dann klar war, dass Satelliten äh eine gute Idee sind, weil man wollte ja natürlich von oben schauen und ich kann mich noch selber ganz gut dran erinnern, wie das so.Damals so losging im Fernsehen, in den siebziger Jahren, da war ich jetzt auch noch recht jung, aber irgendwiees fing halt irgendwie an, da war dann immer nur so eine Tafel,mit den Linien und ein paar Pfeilen und das war dann irgendwie so das Wetter. Und ich glaube dann so in den achtziger Jahren ging das dann irgendwie los. Dann hatte man halt immer diese Meteorosatbilder, so stand der auch drauf und das waren so dieseFür heutige Verhältnisse sehr äh verausschten Nebelwände, wo man so gesehen hat, soJa okay, gut, sind Wolken über Europa so. Vielmehr konnte man nicht rauslesen, aber das war ja dann schon auch so eine so eine so eine Technik kulturelle Revolution, die dann eben so langsam übers Fernsehen äh zuallen dann äh ausgespielt wurde. Zu welchem, wie hat sich denn das jetzt sozusagen äh.Entwickelt, wo fing äh äh das an, dass man gesagt hat, okay, wir müssen jetzt die Raumfahrt auch fürs Wetter benutzen.
Cristian Bank
Ähm also den den ersten Schritt haben dort tatsächlich die die Amerikaner gemacht, die äh schon in den späten 50ern und Anfang der sechziger Jahre,Tests gemacht haben, indem sie von Satelliten äh einfach Fotos,äh Wolken gemacht haben und dann äh versucht haben, die auszuwerten, hat damals natürlich diese Kette,vom Fotografieren des Satelliten bis hin zur Auswertung durch einen Meterologen relativ lange gedauert. Da war das Wetter dann schon eine Weile vorbei, bis das soweit war. Es konnte man also kaum wirklich zu einer Echtzeitauswertung nutzen.
Tim Pritlove
Es war im Prinzip überhaupt das der der erste Blick überhaupt mal von oben, den man überhaupt erst mal gewonnen hat, weil man saß ja bis dahin immer nur von unten und hatte wahrscheinlich gar keine Vorstellung, schon gar nicht darüber, wo sind denn überall immer gleichzeitig Wolken, kommen die nur manchmal oder.
Cristian Bank
Absolut und was kann man vor allen Dingen von oben sehen und was kann man nicht sehen? Ähm und dieses Verständnis dafür zu entwickeln, das war glaube ich auch erstmal sehr wichtig, wo sind die Möglichkeiten, aber auch die Grenzen dieser dieser reinen Fotografie.Und ähm 1967 hatte man dann den ersten Satelliten, der tatsächlich regelmäßig.Auch farbliche Bilder von oben gemacht hat aus dem geostationären Orbit, November 67 fingt es an und seitdem hat man solche Wolkenfilme.Ähm aus dem Orbit.Und als das sich herausstellte, dass das äh ein gutes Mittel ist, um zum Beispiel entstehende Stürme oder Wetterfronten zu erkennen, die großräumig sich entwickeln, hat man dann gesagt, gut, das brauchen wir operationell. Das ist eine gute Ergänzung zu unseren bodengebundenen Vorhersagen.Und hat dann ähm Anfang der 70er Jahre in den USA die ersten wirklichen dedizierten Wettersatelliten gehabt.Die Europäer haben sich das angeguckt, haben äh gesagt, das ist tatsächlich sehr, sehr hilfreich. Wir wollen das über Europa auch haben,amerikanischen Satelliten haben natürlich primär auf die USA und auf Nordamerika geguckt, bisschen auch auf Südamerika, aber Europa war eben nicht,vollständig abgedeckt, nur der Nordatlantik. Und darum hat Europa gesagt, wir brauchen ein System haben, was Europa komplett abdeck.Und so fing dann die Entwicklung der Meteorosatz an des ersten Meteosatz.
Tim Pritlove
Wie soll denn das technisch aus? Also der erste Sattel liegt, glaube ich, war dieser Tiros äh Satellit in äh sechziger Jahren.Ähm oder das war so ein so ein komplettes äh Programm von verschiedenen ähm Satelliten, die ja im Prinzip mit dem Ziel irgendwie mal Großwetterlage äh abzudecken, so entwickelt äh wurden. Was war das so für eine Technik? Womit hat man dann,überhaupt auf die Erde geschaut, weil so Liveübertragung, das war ja wahrscheinlich alles noch so analoge Funktechnik.
Cristian Bank
Ja? Ja, aber damals fing das tatsächlich schon an, dass man mit lichtempfindlichen Zellen, mit Fotozellen,ähm die Erde äh abgescannt hat. Ähm man hat also äh versucht äh tatsächlich äh die die die das Bild der Erde in elektronische Daten gleich in Messwerte zu übersetzen, also.
Tim Pritlove
Schon digitalisiert auch.
Cristian Bank
Ja, also nicht digitalisiert im heutigen heutigen Sinne, es waren schon analoge,Messwerte damals, aber die sind per Funk und dann auch in in sehr kurzer Zeit zum Boden gefunkt worden,um tatsächlich einzufließen in die realen Wettervorhersagen und das muss ja dann schon relativ bald passieren, ne? Sonst sagt man das Wetter von gestern voraus. Das ist nicht immer interessant,und äh und äh diese Kette aufzubauen, ja? Wie man möglichst schnell die Satellitendaten zum Boden und in die Vorhersage hineinbekommt. Das hat man damals ganz gut gelernt und das waren wirklich Wegbereiter von digitalen Kameras, wie wir sie heute kennen,von ja elektronischen Kameras einfach, die nicht mehr per Film Fotos machen und erst dann entwickelt werden muss.Und abgetastet werden muss, äh wie es bei den allerersten Satelliten der Fall war, ähm sondern dass man hier tatsächlich eine sofortige Umsetzung,Messung in einen elektrischen Messwert hat und den dann zum Boden funken kann. Und äh das war Voraussetzung dafür, äh dass wir dann die digitalen Kameras hatten und die die ähm äh Einbringung der Messwerte direkt in die Wettervorhersage-Modelle, wie wir das heute kennen.
Tim Pritlove
Und mit welchen Orbits äh fing das an? Also so ein so ein Orbit wie es die ISS hat, ist ja für Wetterbeobachtung,eher nicht so äh geeignet, weil man will ja mehr oder weniger immer den selben Bereich anschauen, aber so geosynchrone Satelliten gab's, glaube ich, zu dem Zeitpunkt auch noch gar nicht, oder.
Cristian Bank
Doch, das hat man dann auch relativ äh schnell ähm aufgenommen, dass man diese Satelliten äh in den geostationären Orbit gebracht hat. Wie gesagt damals in den in den späten sechziger Jahren,und äh dann ein zweiter Orbit, der noch dazukam, ähm war dann der Sonnensynchroner, der sogenannte Sonnensynchrone Orbit,der jeden,Ort in der Welt zur gleichen lokalen Zeit überfliegt und damit immer mit dem gleichen, mit den gleichen Lichtverhältnissen äh fotografieren kann. Das ist ganz hilfreich, dann muss man sich nämlich dieses Helldunkel-Wechsel zwischen Tag und Nacht nicht mehr rausrechnen, sondern hat dann an jedem Ort,ähm den gleichen Sonnenstand.
Tim Pritlove
Also ein polarer Orbit Nord-Süd äh über die Pole äh hinweg, aber quasi so in der Geschwindigkeit, dass man mit der Sonne mitzieht.
Cristian Bank
Genau, genau. Und diese beiden Orbits sind nach wie vor auch heute die wichtigsten Orbits, also der geostationäre, um eine Halbkugel permanent zu anzuschauen. Das haben wir mit Metoset hier für Europa.Äh und der Sonnensynchrone, der die ganze Welt abdecken kann, wo's aber eben ähm einen halben Tag dauert, bis man die gesamte Welt einmal abgescannt hat.
Tim Pritlove
Wo man auch die ganze Zeit Licht auf den Solarpanelen hat. Ist ja auch noch so ein so ein Nebeneffekt, genau. Das heißt mit fing es an und man hat dann relativ schnell gemerkt so oha okaybringt auch was. Also die Daten, die man da äh gewinnt,Was war denn das im Prinzip für Daten, die man gewonnen hat durch diesen reinen Videoblick? Weil es war jetzt quasi nur Licht im sichtbaren Bereich, wie wir das von unseren Augen her äh kennen. Was was lässt sich denn äh daran überhaupt ablesen?
Cristian Bank
Ähm ja, das waren tatsächlich erstmal reine Fotos. Es gibt also noch die Anekdote, dass die ersten Fotos, die dann von dem Meteorsatz zur Erde gesendet wurden,hier tatsächlich in Darmstadt ankamen, damals noch bei den Kollegen von der Isog,auf dem Bildschirm erschienen und dann mit einer Sofortbildkamera, mit einer Polaroid abfotografiert wurden und,Polaroid Foto wurde dann per Autokurier nach Offenbach gefahren, wo der deutsche Wetterdienst sitzt und dort von dem Meteorologen sozusagen angeschaut und dann interpretiert.Das waren so die allerersten Dinge und dann ist klar, aus diesen Art von Fotos kann man natürlich nur ganz begrenzte Informationen ziehen. Man kann sehen, wo große Wetterfrontenentlang laufen, ja? Wo sich äh Instabilitäten in der Atmosphäre entwickeln, wo große Sprünge in Temperatur,Dampfdruck et cetera sich ausbilden.
Tim Pritlove
Oder große Stürme, Hurricanes.
Cristian Bank
Das sind Dinge, die natürlich erst mal unterstützend wirken, weil eigentlich hätte man die Daten auch aus den Wetterstationen, äh aber man hat das Ganze bildlich noch mal vor sich und ich glaube, damals in den siebziger Jahren war es für die Meteorologen,Einfach erst mal wichtig, dass nebeneinander zu halten und zu.
Tim Pritlove
Korrelation herzustellen. So sieht es aus und so war's.
Cristian Bank
Was sagt mir das eine oder sagt mir das andere? Bei den Messwerten habe ich riesen Zahlenkolonnen oder eine Karte mit ganz vielen Messwerten, die eingetragen sind nomerisch. Bei dem Foto habe ich einen,visuellen Eindruck und als Mensch, als visuelles Tier, kann man aus so einem Bild ja nochmal ein bisschen mehr äh äh herauslesen,und äh das übereinander zu bringen, das war erstmal ein Lerneffekt. Heutzutage sind wir natürlich einige Schritte weiter. Das heißt, wir haben erstmal,in den elektronischen Bildern sehr viel stärkere ähm Granularität und sehr viel größere Feinheit der einzelnen Lichtwerte, wenn man so will,die kann man elektronisch verstärken. Das heißt, wir können jetzt nicht nur nur die großen äh äh Regenwolken sehensondern wir können tatsächlich auch Cyruswolken sehen, ganz feine Eiswolken. Wir können Wolken in verschiedenen Höhen sehen und damit auch interpretieren. Was sind das eigentlich für Wolken und was haben die für einen Einfluss auf das lokale Wetter?
Tim Pritlove
Man kann auch sehen, in welcher Höhe sie sind.
Cristian Bank
Ja, in welcher Höhe sie sind, ob sie aus Wassertröpfchen, aus Eiskristallen bestehen et cetera.
Tim Pritlove
Aber das lässt sich das schon rein visuell äh herauslesen oder.
Cristian Bank
Man aus den elektronischen Messwerten dann herausrechnen, indem man verschiedene Farben miteinander kombiniert. Das ist dann der nächste Schritt.Wenn wir ein Mehrfarbenfoto haben, sage ich mal, da also ein ein ein äh Bundfoto sozusagen.
Tim Pritlove
Also gefiltert.
Cristian Bank
Durch verschiedene Farbfilter. Dann können wir durch die Kombination dieser verschiedenen Farben bestimmte ähm Wolken besser hervorheben oder herausfiltern.Und dann äh daraus herauslesen, ähm ja, was das für ein Typ Wolken ist, woraus die bestehende Höhe die sind, was bis hin zur Frage, was für eine Temperatur die haben und so weiter und das liefert natürlich nochmal großflächig.Ganz viele zusätzliche Informationen, die sie aus reinen Bodenmesswerten in der Form so nicht haben.
Tim Pritlove
Anfang äh zurück. Also das waren jetzt so quasi die ersten Erkenntnisse aus äh natürlich jetzt noch nicht in dieser Feinheit, wie wir sie jetzt schon äh angedeutet haben, aber es war so klarbringt was so. Also Satelliten da oben zu haben, das das erweitert äh im wahrsten Sinne des Wortes den den Blick auf die Angelegenheit und ähm,nachdem man dann wahrscheinlich auch ein paar Jahre diese Korrelation durchgeführt hat und gesagt hat, okay, so sieht's aus. Das war, was wir da an Luftfeuchtigkeit, Luftdruck et cetera, Wind und so weiter hatten. Man sieht schon so erste äh Patterns und,noch nicht alles wissen, äh ist absehbar, dass umso besser man draufschaut, umso mehr wird man äh vorhersagen können und das hat ja dann dieses ganze Wettersatellitenprogramm beschleunigt,angedeutet. Irgendwann waren dann auch die Europäer so weit, die halt mit ihrer Raumfahrt ohnehin,ein wenig hinterher hingen und in den siebziger Jahren in dem Sinne noch gar keine wirklichen großen Missionen oder auch nur Strukturen äh,hatten. Wie fing das dann an, dass es so einen europäischen Move gab in diesem Bereich.
Cristian Bank
Also wir hatten schon in den 60er Jahren in Europa ja zwei Organisationen, die Eldo und die Esro,Die Ello hat damals den Vorläufer der Ariana versucht zu entwickeln, also eine eigene Trägerrakete.Ähm und die Esro hat damals die ähm ja die Satelliten, die Anwendungssatelliten, die Forschungssatelliten entwickelt und das ist der die beiden sind die Vorläufer der Esa.
Tim Pritlove
Also European Launcher Development Organisation, dafür steht äh Eldo. Das wurde dann später dann Ariane Spass und die European Space Research Organisation Esro und das war dann Isar. Mhm.
Cristian Bank
Genau, das das ging dann über in die Isar und äh die ist ja Anfang der 70er Jahre dann sozusagen entstanden aus der Zusammenführung dieser beiden,und äh da war das Thema äh Anwendung in der Raumfahrt ganz wichtig und da ist auch das äh das eigentliche Meteosat-Programm zuerst entstanden. Also die Esa hat dann einen ersten Prototypen entwickelt,basierend auf den Informationen und auf den Erfahrungen, die die Amerikaner mit ihren äh Satelliten schon gesammelt hatten,und hat sich überlegt, wie man das am besten mit europäischer Technologie ähm realisieren kann,Das waren dann, es war ein geostationärer Satellit, der spinnt stabilisiert war, das heißt, der hat sich wie ein Kreisel um sich selbst gedreht.Und konnte durch dieses Kreiseln mit einem Objektiv die Erde immer zeilenweise abtasten. Ne, bei jeder Umdrehung hat er eine Zeile abgetastet und konnte da dadurch sehr fein die Messwerte von äh von der Erdoberfläche dann abtasten.
Tim Pritlove
Man brauchte auch nicht so ein großes, breites Sensorfeld, wo man dann unter Umständen noch das Problem hat, dass die,einzelnen Messelemente alle unterschiedlich funktionieren, unterschiedlich gut funktionieren, dadurch dass man sich durchdreht und das mit einer Zeile abtastet hat man sozusagen auch wirklich zumindest auf einer Zeile auch immer dasselbe Eingabegerät in dem Moment.
Cristian Bank
Genau, also da hat man diese diese Fehler zum Beispiel nicht äh als Problem gehabt.
Tim Pritlove
Scanner im Prinzip. Genau.
Cristian Bank
Genau, ne. Der hat ein eine Scanachse war sozusagen der Drehende, der sich drehende Satellite. Es gab dann noch eine zweite Scannerachse, nämlich einen Spiegel, der hat also die Nord-Südrichtung,immer gekippt, ne. Das heißt, der äh die Zeile Ost-West war durch die Satellitendrehung gegeben und die Nord-Südablastung durch einen Spiegel. Und ähm,dadurch hat man also alle 30 Minuten sozusagen die äh die Seite der Erde, die man gesehen hat, die halbe Erdkugel komplett abgetastet. Und äh.
Tim Pritlove
Dieser Spin war eher langsam.
Cristian Bank
Ja, äh ich glaube, der Spinnen war, ich muss mal überlegen, irgendwas in Richtung fünfzehn Umdrehungen pro Minute oder so was in der Richtung oder zehn Umdrehungen pro Minute, irgendwas in der Gegend. Nageln Sie mich auf den Zahlenwert.
Tim Pritlove
Ich wollte jetzt nur wissen, ob das Ding wie irre sich dreht oder äh langsam so um sich herumschält.
Cristian Bank
Nein, nein. Also das das wiegt ja dann auch durchaus äh so seine zwei Tonnen, also den Kreisel, wenn der sich dann auch der Umdrehung dreht, dann hat er einen ganz guten Drehmoment.
Tim Pritlove
Und damit auch eine gute Stabilisierung.
Cristian Bank
Ganz genau. Ja und das System war eigentlich recht erfolgreich, sodass man gesagt hat, ähm das war der erste Meteott.
Tim Pritlove
Das war dann schon der.
Cristian Bank
Was da schon Meter satt, genau und da hat man gesagt, da möchte man gern mehrere davon haben, hat zwei, drei Nachbauten von diesem Satelliten erst mal gemacht, damit man kontinuierlichen Service aufbauen kann, ja, also es bringt ja den,Wetterdiensten wenig, wenn sie äh mal für zwei Jahre Messwerte haben und dann ist wieder für fünf Jahre kein Messwert. Also das ist äh nicht hilfreich, um,kontinuierlich die Wettervorhersagen zu verbessern, sondern es war klar, es muss ein kontinuierlicher Service sein.Darum schnell erstmal zwei Nachbauten von diesen Satelliten, die hat man auch gestartet in Betrieben und dann kam der Punkt, wie können wir das verbessern?Weiterentwickelte zweite äh Generation dieser Meteorosatz entwickelt. MSG Methous hat second generation.Und äh die fliegen tatsächlich bis heute. Der letzte Satellit wurde 2015 gestartet aus dieser Familie. Und die liefern heute uns die Wetterkarten, die wir äh im Fernsehen, in den Wetterberichten sehen.Und äh ja hat sich für Europa wirklich als äh sehr sehr positiv herausgestellt. Mittlerweile.Nicht nur die Amerikaner und die Europäer derartige Satelliten, sondern auch in Asien, gibt's Japan zum Beispiel, China, die haben auch solche Wettersatelliten, Russland ebenso. Und mittlerweile haben sich diese ganzen,Organisationen so weit abgesprochen, dass sie die Wetterdaten miteinander austauschen. Wir können also quasi permanent die Erde rundherum mit Wertesatelliten beobachten.
Tim Pritlove
Mhm. Ohne dass irgendeine Stelle jetzt nicht mehr abgedeckt wäre?
Cristian Bank
Ja genau, aus dem geostationären Orbit haben wir eine komplette Abdeckung der der Erde.
Tim Pritlove
Aussah der Pole oder.
Cristian Bank
Ja natürlich, das ist natürlich schwierig zu sehen vom geostationären Arbeit, der ist ja überm Äquator und da ist der Polen natürlich ähm ja nur noch.
Tim Pritlove
Aber es gibt ja dann auch noch die Polanobits, die müssten das ja wunderbar mitkriegen.
Cristian Bank
Ganz genau, dafür haben wir dann die Polarensatelliten. Aber ähm dadurch, dass die der größte Teil der Bevölkerung äh eben in einem Band von, ich sage mal, plus 70 bis minus.
Tim Pritlove
Antarktiswässer ist jetzt vielleicht mal interessant zum Nachschlagen irgendwann, aber so täglich braucht man das jetzt.
Cristian Bank
Ist ein ist ein Spezialthema, ist hat natürlich große Auswirkungen auch auf unser Wetter. Wie oft hören wir davon, dass Polarstürme nach nach Kanada und in die USA einbrechen und auch die Blizzards verursachen? Auch hier in Europa habenimmer wieder Kaltwettereinbrüche, das kommt von den Polregionen, deswegen ist das Wetter nicht völlig unwichtig,Müssen wir beobachten, insbesondere jetzt, wo die Eisbedeckung immer weiter abnimmt und dass immer größere Variabilität zeigt, dieses Wetter dort, aber es ist klar, dass äh,Für uns ist wichtig, der Nordatlantik, was kommt aus Afrika,auch was kommt ausm Norden und was kommt aus Sibirien? Also wir müssen aus allen Richtungen gucken und deswegen ist es für uns so wichtig, dass wir die Daten weltumspannend haben und mit allen austauschen können.
Tim Pritlove
Das heißt also sowohl die erste als auch die zweite Generation sind geosynchrone äh Satelliten gewesen mit äh eins bis weiß nicht sieben oder so, glaube ich, die ähm also die erste Generation war glaube ich bis sieben.
Cristian Bank
Waren erst eins bis drei und dann haben wir vier bis elf jetzt.
Tim Pritlove
Okay und es gibt aber auch schon eine dritte Generation.
Cristian Bank
Ja, das ist dann der Blick in die nahe Zukunft. Ähm die,Technologie gerade für die Kameras und für diese Scans, wie ich sie eben beschrieben habe, ja durch das Drehen des Satelliten, die hat sichWie wir alle wissen, in den letzten Jahrzehnten enorm weiterentwickelt. Wir alle haben jetzt Digitalkameras in den Handys, aber auch vorher hatten wir ja schon die normalen Filmkameras sind ja ersetzt worden durch Digitalkameras und das spiegelt ja nur wider, welche Technologie insgesamt verfügbar ist.Man hat auch für die Satelliten irgendwann mal gesagt, ähm es hat Vorteile, wenn wir diese geostationalen Satelliten nicht mehr als,sich drehende, spinnstabilisierte Satelliten machen, sondern tatsächlich als Dreiachsen stabilisierte Satelliten, die also tatsächlich immer mit dem Gesicht sozusagen, mit dem Kameraobjektiv auf die Erde schauen,und äh das ist zwar anspruchsvoller, was die Lageregelung angeht und auch was die Kameratechnik angeht, aber diese Technologie steht mittlerweile zur Verfügung und dann wiegen die Vorteile, die man aus so einer Konfiguration bekommt.Den höheren Aufwand aus, den man in die Kameras und in die Regelung stecken muss.
Tim Pritlove
So drei drin die ähm das halt einfach äh ausdrehen sozusagen.
Cristian Bank
Ja genau. Verschiedene Systeme, die den Satelliten stabil immer auf die Erde ausrichten, sodass also diese jetzt kommende Generation und wir sprechen hier tatsächlich von 202undzwanzig Ende 2022, also in etwa 15 Monaten,wird dann die dritte Generation der Meteorsatz starten MTG Meteorsat firth Generation. Das wären dann,drei Achsen stabilisierte Satelliten sein, aber das Prinzip ist wieder das Gleiche, die Erde kontinuierlich mit hoher Auflösung zu fotografieren und dort insbesondere sich zu konzentrieren auf alle Daten und alle Informationen, die für Wetter und Klimarelevant sind.
Tim Pritlove
Wie viele Meter sind denn jetzt grade gleichzeitig im Betrieb.
Cristian Bank
Wir haben ähm wir können sagen vier Satelliten im Betrieb, davon sind zwei ähm komplementär. Der eine Satellit konzentriert sich auf Europa.Der zweite Satellit ähm fotografiert quasi die Halbkugel, die man vom geostationären äh Orbit aus sieht.Dritter Satellit liefert einen Backup-Service.Und ein vierter Satellit ist über dem indischen Ozean, das heißt dort haben wir die Region, die wir mit unseren Meteorsatz abdecken, bisschen weiter nach Osten noch verschoben und können also bis in den indischen Ozean und auch bis über Sibirien hinaus äh die Wettersysteme beobachten.
Tim Pritlove
Das Backup ist im Backup für welchen für für die also entweder oder, weil der also weil der Fokus sozusagen kann angepasst werden. Worauf man genau schaut.
Cristian Bank
Ja und wir haben auch durch diese verwendete Kameratechnik an Bord der Satelliten gibt es immer mal wieder Auszeiten, also die Kameras müssen immer mal wieder,sozusagen nachkalibriert werden, brauchen mal eine Ruhepause, gerade dieser sich kippende Spiegel, den ich vorhin erwähnte, der die Nord-Süd-Ausrichtung macht. Dieser Mechanismus ist äh,bisschen pflegeintensiv. Ähm und der braucht Auszeiten.Das Jahr. Und damit man in der Zeit eben nicht die Daten verliert oder sagt, man hat jetzt gerade keine Satellitendaten für die Wettervorhersage, dann kann man diesen Backup-Sattelliten nutzen, der dann sozusagen heiß renontant einspringt.
Tim Pritlove
Wie lange dauert das, wenn jetzt so angenommen ist gäbe jetzt einen Fehler? Also angenommen, es gäbe jetzt mal so richtig Error, ist ja vielleicht auch schon mal passiert, äh wie schnell kann man auf den anderen dann umschalten?
Cristian Bank
Das geht innerhalb von och ich würde mal sagen wenigen Stunden, ja, das sind ein, zwei Stunden. Ähm und dann muss natürlich die Maschinerie erstmal wieder synchronisiert werden. Aber die Technik an sich steht eigentlich, die ist heiß redundant, die steht eigentlich zur Verfügung.
Tim Pritlove
Und warum gibt's jetzt noch diesen Blick auf den Indischen Ozean?
Cristian Bank
Ähm erst mal gibt's ähm natürlich äh den den Punkt, dass wir ähm,ja, wenn wir von Deutschland aus schauen, wir haben im Indischen Ozean keine großen Interessen, ja, das interessiert uns nicht so wesentlich, aber wir haben ja als auch Frankreich und Großbritannien als Mitgliedslander zum Beispiel.Und da gibt es durchaus äh sowohl in der Karibik, deswegen eine Ausdehnung nach Westen, als auch im indischen Ozean äh französische und britische Inseln und Gebiete, Territorien,die einfach von diesen nationalen Wetterdiensten auch mit Wettervorhersagen versorgt werden müssen und darum ist äh die Abdeckung mit Satellitendaten auch in Richtung Indischer Ozean wichtig.
Tim Pritlove
Stimmt, dass Europa größer ist, als man manchmal so denkt, da muss man nur auf die Banknoten drauf schauen. Da sind die nämlich alle eingezeichne.
Cristian Bank
Die ganzen Inseln, genau. Und dann dürfen wir nicht vergessen, das muss man einfach auch sagen, dass das Thema Flugwetter ja ein ganz wichtiges Element der Wettervorhersage ist.Und äh Flugwetter,ja wissen wir, dass es auch Richtung äh Afghanistan äh ein wichtiges Thema war auch für die für die Bundeswehr, aber natürlich auch für die anderen,Länder, die dort im Einsatz beteiligt waren, das heißt, dort vorhersagen zu können, wie die Routen äh aussehen, aber eben bis in den Indischen Ozean hinein,und auch die Unterstützung nicht zu vergessen der afrikanischen Wetterdienste, die ja auch vom indischen Ozean stark betroffen sind. Das waren alles Elemente zu sagen, wenn wir in Satelliten übrig haben,Der funktioniert noch, dann schieben wir den mal in Richtung Indischen Ozean und können so die die Abdeckung ausdecken.
Tim Pritlove
Der war noch über.
Cristian Bank
Der hat länger funktioniert, als wir das ursprünglich gedacht haben. Wenn wir.
Tim Pritlove
Älteste von den Vieren. Genau. Mhm.
Cristian Bank
Genau. Wenn wir jetzt nur drei Satelliten hätten, dann würden wir wahrscheinlich den indischen Ozean nicht in der Form abdecken können,Ähm aber das ist einfach möglich dadurch, dass die die Satelliten in ihrer Grundfunktion einfach sehr stabil und langlebig sind und darum konnten wir diese diesen Bereich der Abdeckung weiter ausdenken.
Tim Pritlove
Einer von den vieren noch aus der ersten Generation.
Cristian Bank
Nein, die erste Generation ist nicht mehr da, es sind alles zweite Generationen.
Tim Pritlove
Die ähm.Dritte Generation. Also was hat sich jetzt so technisch wenn man jetzt mal erste auf zweite, zweite auf Dritte sieht so an den Instrumenarien?Nennenswert verändert,Also erste haben wir ja schon besprochen. Im Prinzip eine Abtastungszelle und ist ja gar nicht mal eine ganze Reihe, wie ich vorhin gesagt habe, ist ja eigentlich nur ein Punkt sozusagen mit dem Spiegel äh und mit der Rotation des Körpers. Das PrinzipIst aber auch noch bei der zweiten Generation beibehalten worden. Man konnte wahrscheinlich nur höher auflösen, feiner gucken.Ist die zweite Generation auch eine reine optische Beobachtung oder wird da auch aus im Infrarotbereich äh empfangen, was.Die Unterschiede.
Cristian Bank
Also ein wesentlicher wesentliche Weiterentwicklung der Kamera für die zweite Generation war dann tatsächlich, dass ein größerer Frequenzbereich ja, also mehr Farben ähm vermessen werden konnten.Ähm da sind wir auf wesentlich mehr äh Frequenzbänder bis in den Infrarotbereich hin hineingegangen,und äh der Infrarotbereich ist gerade sehr wichtig für das Thema Wasserdampf in der Atmosphäre. Also man kann ähm.Nicht Wolken, die sind ja optisch gut zu sehen, ja, das sind ja quasi Tröpfchen von Wasser in Atmosphäre, sondern man kann den Wasserdampf,in der Atmosphäre besonders gut im Infrarotenbereich sehen,und das ist sozusagen das versteckte Wasser in der Atmosphäre, was dann später zu Wolkenbildung führen kann unter bestimmten atmosphärischen Bedingungen, deswegen war das für die Meteorologen wichtig, eben auch Informationen über die Verteilung des Wasserdampfes und die Sättigung,der Atmosphäre mit Wasserdampf zu bekommen. Das war eine große Weiterentwicklung und bei der dritten Generation, bei MTG,haben wir jetzt wieder eine Erweiterung der Frequenzbänder, das heißt, wir können feinere Bänder,anschauen. Die sind schmaler geworden, schmalere Frequenzbänder, wir können also stärker differenzieren zwischen den unterschiedlichen Komponenten und den unterschiedlichen Wolkentypen.Es geht stärker in den Bereich des Infraroten hinein,aber die Auflösung, also die Pixel äh Auflösung der Bilder ist sehr viel feiner. Wir haben eine höhere Auflösung jetzt durch die neuen Satelliten.
Tim Pritlove
Wie war's vorher? Wie ist es dann?
Cristian Bank
Na ja, wir waren vorher, glaube ich, im Bereich und jetzt nageln sie mich nicht auf die Zahlen fest, irgendwo im Bereich von zehn, zwölf Kilometer am Boden, für einen Punkt. Wir kommen jetzt in den Bereich von, ich glaube, um die vier Kilometer.
Tim Pritlove
Mhm. Aus 36.000 Kilometern Entfernung.
Cristian Bank
Ganz genau, das muss man sich klar machen, ja, das ist also schon sozusagen die Fliege auf der Nase des äh 1hundert Meter-Läufers, der ins Ziel kommt, während man selbst noch im Startblock steht, sogar.
Tim Pritlove
Wie viel Pixel, also ist es dann also ähm die Zweiten haben immer noch dieses Rotations Prinzip. Ähm das heißt, es ist halt eigentlich nur eine einzige Dichtzelle, die äh diese Punkte aufnimmt.Oder sind das auch schon mehrere, um diese Pixel zu erzeugen.
Cristian Bank
Nein, das ist im Prinzip eine Abtastung von einem von einem Punkt am Boden, der aber, weil wir verschiedene Farben anschauen, mehrere Detektoren ja äh.
Tim Pritlove
Okay, also das Licht von einem Punkt wird genommen und dann in verschiedenen äh Objektiven aufgebrochen und äh separat quasi ausgewertet.Man kriegt so mehrere Informationsaksen pro Punkt, aber trotzdem schaut sich der Satellit streng genommen zu einem zu einer Zeiteinheit, immer nur einen einzigen Punkt an. Wie lange schaut der so üblicherweise auf so einen Punkt?Also mit der Rotation und der Abtastung, mit dem Spiegel.
Cristian Bank
Dass er sich dreht, muss er ja immer sehr kurze Aufnahmen machen. Es würde ja die Information verschmiert werden über die Punkte. Also das sind dann tatsächlich so wie wir das kennen auch von von Aufnahmen auf der Erde.
Tim Pritlove
Millisekunden.
Cristian Bank
Ja Millisekunden äh ist, glaube ich, dann sehr wenig, aber ich glaube.
Tim Pritlove
Zehnte? Okay.
Cristian Bank
Bereich genau in der Richtung und äh mit der neuen Generation da haben wir jetzt tatsächlich ein Sensorfeld,was dann äh die Erde nach und nach abtastet. Also es wird immer noch,äh quasi die Erdoberfläche Stück für Stück abgetastet. Ähm und äh das passiert jetzt aber für für Felder.
Tim Pritlove
Für viele Pixel sozusagen gleichzeitig. Also man hat so eine Matrix und wie groß ist diese Matrix? Wie viele Punkte werden da aufgenommen.
Cristian Bank
Das kann ich Ihnen gerade auswendig nicht sagen.
Tim Pritlove
Hunderter, tausende Bereiche, also sind das nur sie jetzt ein paar mehr oder ist es gleich was ganz Großes?
Cristian Bank
Ähm nein, also wir haben ähm zum Beispiel äh die Abdeckung des des oberen Viertels der Erde,die passiert ja kann man sagen ganz grob über,rund 40 Felder, die wird in rund 40 Felder aufgeteilt und äh das heißt ein so ein Feld ist dann in der Größe ungefähr. Hm, das sind,Ich glaube, wenn mich alles täuscht, so hundertsechzig mal hundert1sechzig Pixel pro Feld, die dann aufgelöst werden.Also die die Pixelzahl an sich ist da nicht so entscheidend wie bei,Fotoapparaten, die wir hier auf der Erde verwenden, sondern die Sensibilität der Pixel, die Genauigkeit, der Messwerte und natürlich die Auflösung in die verschiedenen Spektralen-Bereiche, die wir erreichen können.
Tim Pritlove
Ist ja, ist ja auch so dieser alter Pixel-Mythos auch bei Kameras. Lange Zeit gab's so diese Wahrnehmung. Eine Kamera ist automatisch dadurch besser, dass sie irgendwie mehr Pixel aufteilt, aber das heißt ja dann auch immer, es fällt weniger Licht auf den Sensor und dasdass die Messungen dann äh ist oder länger belichten muss, um überhaupt erstmal ein akzeptables Ergebnis zu bekommen und wenn man jetzt hier soTime constraint äh ist, also quasi das Ding rotiert sich halt einfach, man will da drauf schauenIst es ja sinnvoll, möglichst große Pixel zu haben oder in dem Fall, wo man eben viele, wenn man noch mal so eine Unterteilung hat, sollten die natürlich alle einzeln auch äh groß äh sein.Aber äh ja können dann eben trotzdem daswahrscheinlich nochmal etwas differenzierter betrachten und man kann mehr Nuancen äh nochmal äh aus diesem.Aus diesem virtuellen großen äh Pixel herausziehen.
Cristian Bank
Mhm. Ja genau. Also deswegen ist nicht so sehr die hohe Pixelanzahl für uns relevant, sondern mehr, wie gesagt, die Qualität.
Tim Pritlove
Genau. Wie wie genau ist das? Wie viel Licht macht das? Ist das äh Technologie, die dann auch hier entwickelt wird oder wer baut diese Satelliten? Designt, diese.
Cristian Bank
Also wir haben tatsächlich zwei große Gruppen ähm zur Industriegruppen, die äh in Europa in der Lage sind, solche Instrumente zu entwickeln.Das eine ist eine äh es sind beides deutsch-französische Industriegruppen.Und ähm tatsächlich wird äh wird hier, wenn die Metrosatz,äh von einer äh der Gruppen äh entwickelt. Da sitzt äh die französische äh das französische Unternehmen in Cannes an der Mittelmeerküste und das deutsche Unternehmen sitzt in Bremen.Und äh die entwickeln gemeinsam diese Satelliten und auch die Instrumente, die beiden Hauptinstrumente, also diese Kameras, die auf den Satelliten sitzen.Und äh das ist äh natürlich mit vielen Komponenten aus vielen europäischen Ländern, ja, also das äh wird nicht alles im im eigenen Hause entwickelt. Da werden bestimmte Sensoren, bestimmte Teile der Optik,die Filter, die Beschichtung der Filter et cetera, werden also in vielen Ländern dann jeweils äh entwickelt und und zugekauft,einige Teile kommen tatsächlich auch insbesondere, was die Beschichtung von Filtern angeht und von von Strahlteilern, wie man sie nennt, kommen zum Teil auch aus den USA, aber der Anteil der USA der US-Technik ist,immer weiter runtergegangen. Also wir sind mittlerweile in Europa kann man sagen weltweit ähm,unter den Führenden, ich sage nicht immer, wir sind führend, das klingt dann immer so so blasphemisch, aber wir gehören zu den führenden Regionen.
Tim Pritlove
Der Spitzengruppe mit.
Cristian Bank
Da können brauchen wir uns nicht zu verstecken von niemandem, auch von den Amerikanern nicht, dass wir derartige Instrumente sehr gut in Europa entwickeln können mit nahezu allem, was wir dazu brauchen.
Tim Pritlove
Wie läuft denn das konkret ab? Äh können ja mal diese dritte Generation nehmen, weil das ist ja jetzt im Prinzip genau das, was in Betrieb genommen wird. Ähm,Gut, solche Wünsche und äh Vorstellungen, was man dann in einer nächsten Generation mal so machen könnte, das ist ja wahrscheinlich so ein permanenter Vorgang und äh man sitzt jeden Tag da und denkt sich, hätten wir nur ig so ne?Dann aber ab wann hat sich das dann konsolidiert. Also wenn die jetzt nächstes Jahr starten, wann.Hat dieses Design konkret das Design dieser dritten Generation begonnen und mit wem wer spricht sich da jetzt erstmal mit wem darüber ab, was man eigentlich will? Wer macht dieses Anforderungsprofil?
Cristian Bank
Das ist ein ganz wichtiges Verfahren im Vorfeld, bevor man überhaupt anfängt, irgendeine Schraube,an so einem Satelliten zu entwickeln. Das ist tatsächlich ein ganz intensiver Dialog zwischen den Meterologen und Klimaforschern und allen denen, die diese Daten später nutzen sollen.Und uns Ingenieuren hier. Dazu sind sozusagen unsere Experten hier bei äh insbesondere auf der Instrumentenseite wichtig,Und wir haben dort einen sehr intensiven Dialog, um erstmal rauszufinden, was möchtet ihr denn gern an Daten, in welcher Genauigkeit, in welcher Wiederholrate.Über welchen Zeitraum überhaupt haben, damit es euch hilft.
Tim Pritlove
So permanente Arbeitsgruppen oder macht man das eher über so Konferenzen, dass man sagt, so jetzt treffen wir uns mal und dann müsst ihr mal eure Anforderungen vorlegen und dann sprechen wir mal drüber.
Cristian Bank
Also es gibt natürlich permanente wissenschaftliche Beratergremien für alle Missionen. Ja die gucken sich das an und schauen, was man aus den Daten alles rausholen kann. Auch während die Missionen schon fliegen.Auch die heutige zweite Generation an Meteorosatzhat ein enormes Potenzial noch in ihren Daten. Durch die Langfristigkeit, durch die Stabilität, durch die Genauigkeit der Daten wird sie immer wichtiger, nicht nur für Wettervorhersage, ja, das war dann ja vielleicht schon gestern.
Tim Pritlove
Vor allem für Klimaentwicklung.
Cristian Bank
Für Klimaentwicklung und da wird immer mehr ausgewertet, auch aus den früheren Wetterdaten, die wir zum Glück abgespeichert und archiviert haben, die wir jetzt wieder vorholen können. Wir können also rückwärts rechnen,Ja und vergleichbare Situationen vor ein paar Jahren betrachten und dann schauen, wie sich das langfristig ändert. Also insofern gibt's diese wissenschaftlichen Beratergremien permanent. Natürlich. Aber.Sobald wir sagen die die laufende Generation der Satelliten,kann demnächst abgelöst werden durch eine neue Generation, dann machen wir sozusagen nochmal einen konkreten Aufpunkt,für die Wissenschaftler, Meteorologen, Klimaforscher et cetera und sagen so und jetzt fassen wir das mal zusammen. Jetzt schreiben wir das mal fest, denn wie Sie schon gesagt haben, es geht natürlich permanent die Entwicklung weiter, der Wissenschaft, aber muss irgendwann einfach mal auch festschreiben,was man in den Satelliten äh realisieren möchte, sonst hat man eine permanent veränderliche Basis auf der Basis kann man keine Instrumente entwickeln, ja? Irgendwann muss man mal sagen so, das ist es jetzt und das versuchen wir zu entwickeln.So und in diesem Prozess gibt es ein wichtiges Dokument. Das ist das Endnutzer äh Anforderungsdokument.Da steht drin, was der Satelliten alles an Daten liefern können soll.Und das ein kontrolliertes Dokument. Das ist mit den Wissenschaftlern abgesprochen. Das wird auch immer wieder äh reviewt.Und durchgeprüft, aber das dient als Basis für die Entwicklung der der Instrumente.Und das ist jetzt für die neue Generation, für MTG hat man das so zweitausendacht, zweitausendneun, zweitausendzehn,ähm zusammengeschrieben und festgeschrieben und das dient seitdem für die Entwicklung der Instrumente. Ähm dann gibt's erstmal.
Tim Pritlove
2008 hat man im Prinzip angefangen, die erste Spezifikation für die neue Generation zu machen.
Cristian Bank
Genau und dann gibt's einen Ausgleich natürlich äh und Absprachen mit vielen Kreisen an Wissenschaftlern. Äh auch die müssen sich ja erst mal ein gemeinsames Bild machen. Man kann nicht alles realisieren. Manche Werte muss man dann leider wieder aufgeben, weil's nicht realisierbar ist.Ähm die Instrumente ähm können ja auch äh wie gesagt, ergibt ja einen begrenzten Platz auf so einem Satelliten, ja, es können auch nicht alle möglichen Instrumente drauf. Von daher dieser Auswahlprozess ist schon relativ langwierig.Aber das geht dann quasi als Anforderungsdokument in die Industrie und dort wird gesagt, wir brauchen ein Instrument, das Folgendes kann.Wir brauchen einen Satellitensystem, ja, mit der Übertragung der Daten zum Boden, mit der Auswertung der Daten, mit der mit der Prozessierungssoftware und so weiter, die diese Daten innerhalb von einer Zeit X.Durchrechnet und den Nutzern zur Verfügung stellt. Auch das ist ja ein wichtige Anforderung, wie schnell die Daten beim Nutzer sein müssen und das ist bei uns eine der treibenden Kräfte hinter unserem System.Innerhalb von einer halben Stunde zum Beispiel die Satellitendaten beim Nutzer haben möchten.
Tim Pritlove
Wie bei der Isar, wurde erst mal gesammelt wird und dann kriegen das dann irgendwann die Wissenschaftler und dann denke ich mal ein paar Monate drüber nach, sondern hier liegt der Wert einfach in der Echtzeit äh Weiterleitung.
Cristian Bank
Ja natürlich, also wenn man eine eine eine Supernova äh beobachtet, ja und auswertet, was da passiert ist, dann ist es egal, ob das in diesem oder im nächsten Jahr passiert oder in fünf Jahren, das ist ganz klar. Aber bei Wetter kommt's eben drauf an, das Jetzt zu machen.Klima ist wieder eine andere Geschichte,Klima kommt auf die Stabilität und die Archivierbarkeit der Daten an. Das heißt, wir müssen sie wiederfinden und sie müssen auch in einer gleichbleibenden Qualität abgespeichert werden, sodass man sie auch nach ein paar Jahren wiederfindet und hervorholen kann und nachberechnen kann.
Tim Pritlove
So, zweitausendacht ging's los, ähm dann wurden irgendwann die bauenden Unternehmen beauftragt, dann wurde halt gesagt, so hier, das hätten wir gerne, dann haben die kurz drüber gelacht wahrscheinlich und gesagt soschön wär's, aber hier folgende Konstrains und Geld und Größe und Gewicht und was nicht alles, äh dann ist das wahrscheinlich dann so ein äh fortwährendes hin und her und dann sagt man ja okay, gut, dann äh haben wir's hier vielleicht ein bisschen übertrieben, aber wie wär's denn damit und dann findet man irgendwo so den Kompromisswann sind dann die wann ist dann diese Generation quasi technisch abgesegnet worden? Wann stand das Profil fest? Was man jetzt genau bauen möchte.
Cristian Bank
Ja, das war so zweitausendvierzehn, zweitausendfünfzehn,durch diesen Prozess durch. Da spielt ja die die europäische Raumfolgeagentur, die ESA, eine ganz wichtige Rolle, weil das die Spezialisten sind, die dann sicherstellen können, dass so ein Satellit unseren Instrument tatsächlich auch entwickelt werden kann.Wir haben zwar die die Spezialisten, die die Anforderungen der Meteorologen in eine Anforderung an Instrumente übersetzen können, ja? Also diese Interface, das bilden wir.Aber wie man ein Instrument so qualifiziert, dass es im Weltraum auch zehn Jahre hält und funktionieren.
Tim Pritlove
Auch nur den Staat überlebt.
Cristian Bank
Staat überlebt und so weiter. Das sind wieder andere Experten, das ist auch eine Spezialdisziplin von Raumfahrtingenieuren,haben wir hier nicht nochmal dupliziert, weil die gibt's ja schon bei der Isar. Man hat von Anfang an gesagt, das ist dann der Punkt, wo wir an die Isar übergeben, sozusagen, die kriegen dann von uns,Ein Mandat.Für uns diese Satelliten zu entwickeln. Und das macht die Isar. Wir sind da in engen Kontakt. Wir machen auch permanent äh haben wir haben wir unsere Meetings und und äh informieren uns gegenseitig, ähm wie die Anforderungsseite, aber auch die,Satellitenentwicklung vorwärts geht und dann übergibt die Esa, die fertig entwickelten und gebauten Satelliten an uns,sodass wir sie dann starten und betreiben können. Das ist dies Zusammenspiel zwischen Eumelsad und Esa. Deswegen sind wir da natürlich äh nicht ganz so äh bekannt und vielleicht auch nicht ganz so technologisch,äh berühmt wie die Isar, die solche Satelliten entwickeln kann, aber äh das ist eine ganz wichtige Zusammenarbeit. Ohne die könnten wir auch nicht existieren.
Tim Pritlove
Das heißt, die ganzen Satelliten gehen dann vermutlich auch irgendwann mal zum Estech nach Holland, um dort äh ihre finale Absiedlung zu erhalten, bevor sie dann.Was immer gelauncht werden, äh werden alle Meteorosat Satelliten mit äh Ariane-Systemen gestartet.
Cristian Bank
Also die die Satelliten heutzutage hat man das tatsächlich glücklicherweise so, dass die,Industrie, die sie entwickelt ähm dann auch testen kann endgültig testen kann und äh sie gehen dann direkt vom Hauptauftragnehmer, also in diesem Falle aus Cannes oder aus Bremen,auf dem Schiff und werden von dort nach verschickt, also in Französisch-Guyana.
Tim Pritlove
Kommen nicht nicht ins und werden da nicht nochmal auf Herz und Nieren.
Cristian Bank
Die nicht mehr, die nicht mehr. Es gibt andere Satelliten, die werden immer noch in Asdak getestet, aber die dann nicht mehr.
Tim Pritlove
Mhm. Okay.
Cristian Bank
Und ähm die werden dort tatsächlich mit einer Ariane gestartet, ja. Also die Meteorosatz sind äh bis jetzt alle mit einer Ariane gestartet worden.Wir haben für die Sonnensynchronensatelliten, das ist ja eine andere Familie, ja die niedrig Fliegenden äh Satelliten, die diesen polaren Orbit haben.
Tim Pritlove
Noch gar nicht so erwähnt haben.
Cristian Bank
Noch gar nicht erwähnt. Genau, die fliegen dann auch mit einer Rakete, das ist eine etwas kleinere Rakete, die müssen ja nicht ganz so hoch. Ähm aber die Großen.
Tim Pritlove
Aber auch in Corona, ne.
Cristian Bank
Auch von Corona, ja. Die Großen zum geostationären fliegen alle mit der Ariane.
Tim Pritlove
Ariane fünf oder Ariane sechs?
Cristian Bank
Noch Ariane fünf. Gibt ja noch keine Ariane sechs, aber wir sind natürlich ganz gespannt drauf. Ähm aber auch hier wieder, da wir natürlich unsere Satelliten gern auch heil in den Orbit.Möchte man nicht auf den ersten Ariana sechs Start. Wir gucken uns das zwei-, dreimal an und dann nehmen wir einen, der der nachfolgenden.
Tim Pritlove
Der funktioniert. Wir nehmen den, der funktioniert. Ähm,Grade schon äh erwähnt, jetzt haben wir also viel über diese Meteorosat-Generation gesprochen. Die erste, die alles begonnen hat, die zweite, die derzeit die Realität darstellt und die Dritte, die quasi alles nochmal viel äh toller und schöner und bunter macht.Trotzdem gibt's noch diese zweite Serie der Low Orbit, Polar äh Sonnensynchronen äh Satelliten. Die laufen hier unter mit.Seit wann gibt es die und inwiefern ergänzen die jetzt das Spiel?
Cristian Bank
Ja, das sind ähm Satelliten, die ja aufgrund ihrer Umlaufbahn nicht,Eine Halbkugel der Erde permanent im Blick haben, sondern die quasi einen Streifen, den sie gerade überfliegen, vermessen und die erst durch die,Durch das Überfliegen der Erde und durch die Rotation der Erde drunter durch quasi im Laufe eines Tages dann die ganze Erde abdecken können.Und das ist eine Ergänzung dahingehend, dass wir hier ein europäisches System haben, was tatsächlich die Wetter-und klimarelevanten Daten weltweit,messen kann. Die machen das aufgrund ihres Orbits immer morgens um neun Uhr dreißig, also an jedem Ort,der Welt bekommen wir sozusagen die Daten für 9 Uhr dreißig morgens, die Amerikaner haben eine andere Umlaufbahn, die Chinesen haben auch solche Satelliten, die haben wieder eine andere Zeit, sodass man in der Kombination,wieder international der verschiedenen äh sich ergänzenden Satellitensysteme ein Bild der ganzen Welt zu verschiedenen Uhrzeiten am Tag bekommt.Das ist natürlich ähm eine eine interessante Ergänzung.Der zweite Punkt, der ähm hier ergänzend wirkt ist, dass diese Satelliten in der Höhe von,800 bis 1000 Kilometern fliegen, nicht in 36.000 Kilometer Höhe und das macht schon einen Unterschied, auch in der Auflösung der Messwerte auf.Wir haben also hier eine eine höhere Auflösung in diesem Streifen, der da vermessen wird,und wir können auch noch ganz andere Parameter messen, auch äh Luftbestandteile, nicht nur wetterrelevante Daten, physikalische Daten wie Luftdruck, Feuchtigkeit, Temperatur et cetera, sondern wir können hier auch,Stickoxide, Kohlenmonoxid, Schwefeloxide und so weiter. Also atmosphärische Bestandteile messen. Wir kann Aerosole, also Staub in der Atmosphäre vermessen, zum Beispiel aus Vulkanausbrüchen, aber auch von Industrieaktivitäten.Da kommen dann plötzlich Luftqualität Aspekte mit hinein. Und das ist ganz wichtig, um,ähm auch über das Jahr eben die die Qualität der Luft in Europa in Ballungszentren zum Beispiel, das Mikroklima in städtischen Ballungsräumen,ähm äh auswerten zu können,auch Maßnahmen zum zur Sicherung der Luftqualität oder zur Verbesserung der Luftqualität können dadraus abgeleitet werden und man kann überwachen, ob die tatsächlich umgesetzt werden und was die bringen. Das ist nochmal eine eine ganz andere Dimension, die hier mit hineinkommt.
Tim Pritlove
Das Flugwetter durfte an der Stelle eine Rolle spielen, da wird man ja immer ganz hellhörig, wenn man einen Vulkanausbruch äh hört, wir erinnern uns ja alle noch an den Ausbruch äh des oder aus sprechlichen Vulkans in äh Island, der Name, der nicht genannt werden soll, weil keiner ihn aussprech,kann ähm da war ja die das mit der Flugasche so extrem, dass ja wirklich ein äh ein Stopp äh ähm,des Flugbetriebs ausgerufen wurde. Ähm ist man dann da eigentlich also.An so einem interessanten Punkt, weil wir haben's ja schon gesagt, okay, eigentlich geht's ums Wetter und es ist eine Dienstleistung und es geht darumschnell diese Daten zu liefern. Aber natürlich kriegen die Daten jetzt auch im Bereich der Klimaforschung eine extreme Bedeutung, insbesondere weil man eben so einen langenzeitlichen Verlauf hat und da hatten ja manchmal einfach dadurch äh erst interessant werden, dass man eben sehr viele davon hat und sie kontinuierlich hat.Parallel hat ja die ESA aber auch schon immer sehr stark auf ErdBeobachtung gesetzt und in gewisser Hinsicht ist das ja hier eine sehr überschneidende Tätigkeit, also insbesondere die Kopernikus äh Metamission der Esa, habe ich hier bei Raumzeit auch schon viel drüber berichtet. Hier sind diese einzelnen Sentinel.Satelliten in den letzten Jahren schon gestartet worden. Manche kommen noch. Jeder einzelne Satellit oder jedes Pärchen übernimmt so eine bestimmte weiteren Blick und beobachtet ja eben auch viele dieser Aspedie wir gerade angesprochen haben, die jetzt quasi auch diese Methop äh Satelliten machen. Inwiefern sind diese Methop,ähm Satelliten mit in diesen Erdbeobachtungskosmos, der Esa mit eingebunden oder es hat was Separates, arbeitet man da äh zusammen, was,was für eine Rolle spielt quasi Olmed satt bei der eigentlichen Erdbeobachtung, die jetzt eigentlich primär nicht für Wetter gedacht ist?
Cristian Bank
Ähm das ist eine sehr komplexe Frage. Jetzt muss ich erstmal gucken, ob ich die wieder so in Gänze zusammenbekomme, damit ich da eine einfache Antwort drauf formulieren kann.Ähm also das das Kopernikus-Programm erstmal ist tatsächlich äh enorm wichtig,für Europa. Vielleicht sollten wir davon mal ausgehen und dann mal gucken, wie ist unser Verhältnis äh,mit mit Zwischenräumezeit und den anderen Partnern. Zunächst mal wer mir nochmal wichtig festzuhalten, dass das Kopernikusprogramm nicht in erster Linie ein Programm der Isar ist, sondern ein Programm der Europäischen Union.Kommission. Ich glaube ähm wir wir suchen ja immer nach Möglichkeiten irgendwie der Europäischen Kommission am Zeug zu flicken, weil wir den immer vorwerfen. Sie würden irgendwie die Bananen definieren und die Gurken,Ähm aber de facto hat die Europäische Kommission, die Europäische Union,hier ein Programm aufgelegt vor vielen, vielen Jahren schon. Ähnlich übrigens wie Galileo, das Navigations äh System äh von äh von Europa. Was wirklich weltweit Standards setzt,ähm diese dieses Programm, was die die Europäische Kommission dort aufgelegt hat und was durch die Esa natürlich realisiert wird, weil die Isar die Satelliten entwickelt.Setzt Maßstäbe weltweit für Erdbeobachtungsdaten und vor allen Dingen für die Verfügbarkeit und die freie Verfügbarkeit von Erdbeobachtungsdaten. Eins der für mich wichtigsten Ergebnisse dieses Kopernikus Programms.Dass diese Daten der Öffentlichkeit, der Wissenschaft,aber auch für Industrie, für kommerzielle Anwendungen, für die Landwirtschaft, für die Fischerei, für die Sehschifffahrt, für die Flug äh Wirtschaft.Kostenlos und permanent zur Verfügung stehen.
Tim Pritlove
An der Stelle muss ich äh kurz Werbung machen für Raumzeit neunundsechzig, wo ich mich mit Bianca Hirsch äh unterhalten habe über die Kopernikus Open Datas, da äh,schon sehr viel über dieses Thema gekommen und ja klar, ganz klar, das ist ein zentrales Element, ein definierendes Element auch der Koperikus-Mission.
Cristian Bank
Und ich glaube, da da können wir Europäer auch ein klein bisschen stolz auf uns sein, dass wir hier weltweit auch die Fahne hochhalten für diese freie Verfügbarkeit von Daten, weil es durchaus auch andere Regionen in der Welt gibt,solche Daten als Hoheitswissen gerne auch für sich behalten würden oder als Wirtschaftsgut,bestenfalls gegen andere Wirtschaftsgüter tauschen möchten, ja, also die dem geldwerten Vorteil beimessen und dann äh unter Verschluss halten und bestenfalls verkaufen oder tauschen wollen. Also da sind, glaube ich, wir Europäer,ähm ausnahmsweise darf man das mal sagen, äh auch mal auf der guten Seite hier und gerade die Europäische Kommission äh macht hier wirklich einen sehr, sehr guten Job.Ähm und äh ja diese diese Daten sind für so viele Leute eben wichtig, genauso wie die Wetter- und Klimadaten.Dass wir jetzt ein ein Trend sehen, dass das zunehmend zusammenfließt. Also wir haben ja,auf der äh Datenverarbeitungsseite auch ein ganz interessanten Trend, nicht nur durch das Internet, was also die die Verschiebung von Daten zwischen verschiedenen Punkten ermöglicht,sondern auch durch das Cloud-Computing, durch Big Data ähm haben wir jetzt eine Situation, dass man Daten zentral hält,und dort verarbeiten kann und nicht mehr die Daten hin und her schieben muss, um sie irgendwo lokal zu verarbeiten,und dieser äh diese Entwicklung äh hat auch einen ganz großen Einfluss darauf, wie Erdbeobachtungsdaten ähm bereits jetzt aber auch in Zukunft noch immer stärker,ähm genutzt werden und zur Verfügung gestellt werden. Es gibt also im Rahmen des Kopernikusprogramms ähm.Plattformen, Cloudsysteme, auf denen diese Daten liegen und dort eingesehen oder genutzt werden können.Und ähm um äh ja auch ein Beispiel zu nennen. Wir sind von gemeinsam mit zwei anderen Partnern an dem Betrieb einer solchen Plattform beteiligt und haben das mit aufgebaut, was sich jetzt speziell auf,Wetter,Meeresforschungsatmosphärische Daten konzentriert. Also wenn man solche Daten sucht, dann würde man die in einer solchen Cloud finden. Es gibt noch andere Clouds, die sich dann mehr auf,landrelevante Daten äh äh konzentrieren, wie sie für die Landwirtschaft zum Beispiel.
Tim Pritlove
Vermessung, genau. Mhm. Stadtplanerische Daten auch.
Cristian Bank
Genau. Genau und den gibt es äh noch eine weitere Initiative. Wir tun uns jetzt grade mit anderen Partnern zusammen zum Beispiel,ähm um eine äh eine sogenannte zu bilden. Das heißt, dort wollen wir alle Wetter- und klimarelevanten Daten, die wir von diesen Partnern bekommen, auch zentral zur Verfügung stellen.Und ähm als vielleicht letzte, sehr sehr spannende Initiative, wie ich finde,hat die Europäische Kommission, die Esa und wir,jetzt eine eine Initiative gestartet, die sich Destination Earth nennt,Ähm dort geht es darum ähm für die Zukunft,Simulationsmodelle von Wetter oder von Erdsystemen zu erstellen. Das heißt, man versucht die Erde und ihr Verhalten digital zu simulieren,einen sozusagen digitalen Zwilling zu etablieren,zum Beispiel das Wettersystem, also die Atmosphäre, digital repräsentiert ist und dort mit Daten gefüttert wird,Dieser digitale Zwilling der Erde wird im Moment ähm aufgebaut und da können wir in den nächsten Jahren Entwicklung sehen, dass alle diese Daten,die wir eben durch die Satelliten generieren, aber auch aus anderen äh Beobachtungssystemen in dieses digitale Modell mit einfließen und sozusagen dann von allen eingesehen und auch genutzt werden können.
Tim Pritlove
Das heißt, man sieht hier auch schon eine Evolution eigentlich auch dieser Dienstleistung und ich denke, das ist auch halt glaube ich etwas, was man an der Stelle nochmal betonen muss. Ich denke Ometz hat versteht sichprimär sozusagen als als Dienstleister, einer einer Wissenschaft äh Gemeinde auf der einen Seite, aber eben auch denden Wetterdiensten, die in konkreten unmittelbaren gesellschaftlichen und wirtschaftlichen Nutzen haben und und dem ist ja hier im Prinzip erst mal alles untergeordnet. Das,definiert die Ausrichtung, das definiert die Anwendung und all diese Kooperationen mit den Forschungs äh Bereichen, die kommen da noch mit hinzu.Und wenn man jetzt mal quasi so dieses alte Bild des des Polaroidsja, das das der abfotografierte äh Bildschirm, das mehr oder wenigerBeobachtungsfotos der Wolken, der ersten Satellitengeneration nimmt und das äh jetzt mal mit dieser Wezher Cloud hinten zusteht, dann ist das ja sozusagen auch eineVerschiebung der Auswertung dieser Daten. Also wenn man sagt, man stellt die Daten zur Verfügung in einer Weather Cloud, dann meint man ja nicht, man stellt dieselben Daten nur an einem anderen Ort zur Verfügung, sondern das hat auch was mit Aufbereitung, Selektion und,auch schon ein paar Ebenen von Interpretation, dass man eben nicht unbedingt sich jetzt,an jeder Stelle nochmal durch die Rohdaten durcharbeiten muss, weil es ja auch einfach viel zu viel ist, sondern die Daten werden aggregiert, interpretiert und in schon mal in Modelle äh gepackt, sodass man sie auch leichter auswerten kann. Habe ich das richtig verstanden?
Cristian Bank
Absolut, genau. Also das äh ähm das Gute an diesem äh an diesem Cloud-System ist eben, dass man die Rohdaten nicht immer nur hin und her transportieren muss, um sie dann immer wieder neu anzufassen.Sondern dass man die die Interpretationsalgorithmen, also die Software, die aus den Rohdaten tatsächlich Informationen macht,man die auf diesen Rohdaten laufen lassen kann, auf diesen Cloudsystem. Hier spielen die äh nationalen Wetterdienste eine ganz ganz wichtige Rolle.Neben den Reihen Wettervorhersagen, die sie ja täglich machen, haben wir mit unseren.Mitgliedsländern, also mit den Wetterdiensten unserer Mitgliedsländer. Wir haben ja 30 Mitgliedsländer in, muss man nochmal dazu sagen, ja, also wir haben von Island bis zur Türkei und von Norwegen bis Portugal und alles dazwischen, sind Mitgliedsländer von,und haben sozusagen das Nutzungsrecht an diesen Daten, aber sie tragen durch ihre Kompetenz und durch ihre Forschungseinrichtungen und durch ihre Spezialitäten dazu bei, dass sich auch.Unsere Auswertungsalgorithmen entsprechend weiterentwickeln,Wir haben da die das sogenannte Netzwerk der Satellite Application Facilities oder Suff Kurzgarant, SAF.Ähm wo sich einzelne Wetterdienste zusammentun, ja? Eine Handvoll von nationalen Wetterdiensten, die sich für einen bestimmten Bereich besonders interessieren und dort eine besondere Kompetenz entwickeln und daher auch dort bestimmte.Auswerte Algorithmen besonders weiterentwickeln. Ja also wir haben ein eine Gruppe von Wetterdiensten die sich besonders um.Zum Beispiel Waldbrände kümmert oder die sich besonders um die Luftqualität kümmert oder die sich besonders um äh hydrologische Fragen kümmert.So gibt es verschiedene Schwerpunkte und diese Gruppe von Saffs ähm entwickeln als sozusagen Kompetenzzentren, diese auswerte Algorithmen weiter und stellen sie dann aber der gesamten Gemeinschaft zur Verfügung.In das Netz ein und wenn Sie so ein Cloudsystem haben, also eine Datenplattform,der diese auswerte Algorithmen laufen können, dann ist es natürlich viel einfacher sozusagen diese Daten auch zu nutzen und rechtzeitig schnell auszuwerten mit den bestmöglichen auswerte Software, die gerade in der wissenschaftlichen Welt verfügbar sind.
Tim Pritlove
Erstens muss man sich das Rad neu erfinden, was manchmal ganz schön lange dauert, weil manche Räder sind kompliziert,Man ist mehr oder weniger automatisch immer auf dem aktuellen Stand der Forschung, was eben die Interpretation dieser Daten betrifft. Und es sind ja dann auch sehr viel weniger Daten, mit denen man überhaupt noch arbeiten muss, weil man im Prinzip schon diesen Extrakt nimmt und quasi so eine logische Aussage bekommt.
Cristian Bank
So unterstützen sich diese 30 Mitgliedsländer bei gegenseitig mit ihren jeweiligen Kompetenzen. Nicht jeder muss alles machen, sondern man spezialisiert sich im Bereich und hat dann Zugriff auf alle anderen Kompetenzen.
Tim Pritlove
Und wie koexistiert das jetzt mit den Kopernikus Mission?
Cristian Bank
Also die die Senti Nails ähm sind äh erstmal ein ein ein Beobachtungs,System, ja, das ist eine Gruppe von Satelliten, die jeweils jeder Satellit hat, so seine speziellen Instrumente und spezielle Schwerpunkte,Es gibt optische Satelliten, es gibt Radarsatelliten, ähm es gibt Satelliten, die auch im Infrarotbereich arbeiten, um Mikrowellen et cetera.Und die unterschiedliche Bereiche aufnehmen. Das ist also eine Familie,wir haben jetzt sechs Senti Nails die definiert sind. Ein siebter ist jetzt gerade in Entwicklung. In ein paar Jahren kommen noch weitere Sentinel Satelliten dazu, die alle unterschiedliche Schwerpunkte haben.Wie ich eben schon erwähnte, je nach Beobachtungsschwerpunkt und äh ja Anwendungsbereich der Daten, die von diesen Satelliten generiert werden,die ausgewertet durch die verschiedenen ähm wissenschaftlichen Institute, die sich mit dieser Thematik besonders beschäftigen. Wir bei haben nach wie vor den Schwerpunkt der Wetter- und Klimaforschung.Und da gibt es im Moment auch keine Sentinailsatelliten, die jetzt parallel zu uns, Wetter oder Klimadaten vermessen,Die Sentinels beziehen sich auf Erdbeobachtung, ja, also äh mit Radardaten, mit Bilder, mit Mikrowellen et cetera.Aber das ist ein ergänzendes System. Also unsere Wettersatelliten und Klimasatelliten,und auch zum Beispiel ein Satellit, der jetzt die Meereshöhe vermisst, ja, ergänzt sich mit den mit den Daten des Senti Nails, sodass quasi das eine große europäische Familie an Satelliten ist, die insgesamt alle Bereiche der Erdbeobachtung ab.
Tim Pritlove
Das heißt, einfach formuliert die Satelliten und die äh ganzen äh Softwareanwendungen, die noch mit dazugekommen ergänzen. Das Kopernikus Programm mit ihrer spezifischen Wetter-äh,Expertise und Brille und äh reich an das gesamte System dadurch noch weiter an.
Cristian Bank
Ja, genau, so kann man das sagen.
Tim Pritlove
Das heißt auch, dass generell die Daten alle so verfügbar sind, wie das bei Kopernikus ist, also ist diese selber open Data Strategie generell bei.
Cristian Bank
Absolut wichtig, wie ich vorhin schon erwähnte, sind wir ja auch beteiligt, zusammen mit der Ese, aber auch mit anderen Partnern. Solche Cloud-Systemen zu realisieren,Da sind eben nicht nur unsere Daten drauf, sondern da sind auch Sentinell Daten drauf, sodass man tatsächlich die, ich sage mal, das Fernziel wäre, dass ein Nutzer,sich äh in eine ein solches Cloudsystem einloggt, auf eine solche Plattform einloggt und ohne, dass er merkt, von welchem Server,zu welchem Server er sich da nun verbindet, sondern dass er mit einer Nutzeroberfläche im Grunde genommen alle Datenarten von Daten,greifen kann und auch auf die Archive zugreifen kann. Das ist so ein bisschen das Fernziel. Aber dieses Fernziel ist gar nicht so weit weg. Also wir reden ja hier tatsächlich von wenigen Jahren.Realisiert werden soll, denn die Systeme sind in ihrer Grundfunktion schon entwickelt,Im Moment sind alle Partner dabei, ihre Daten auf solche Systeme zu transferieren und es geht jetzt hier in erster Linie um eine,föderale Struktur dieser verschiedenen,Archive, sodass man als Nutzer quasi nur eine Oberfläche hat, aber welche Einzelarchive da drunter liegen gar nicht mehr wahrnimmt und sich auch gar nicht mehr drum zu kümmern, wo auch, sondern man greift dann auf das Archiv zu, wo die Daten halt grade liegen.
Tim Pritlove
Nutzer werden.
Cristian Bank
Ja selbstverständlich, man kann sich im Internet tatsächlich anmelden, auch als Privatnutzer. Ähm natürlich,ein bisschen Expertise schadet nicht bei der Auswertung der Daten, aber ähm das kann äh jede jedes Uni-Institut, jeder Privatnutzer, jedes Forschungsinstitut, jeder nationale Wetterdienst, äh die können das machen.Wie gesagt, die europäischen Daten sind tatsächlich frei verfügbar und äh können dort eingesehen werden.
Tim Pritlove
Auch statt, also gibt's da einen Hair von Hobby, Meteorologen, die da äh äh selber ihre eigenen Auswertungen machen?
Cristian Bank
Na, ich glaube, Hobby-Meteorologen haben wir genauso viele wie Hobbybunde für die Fußball-Nationalmannschaft. Ähm also da sind wahrscheinlich.
Tim Pritlove
Ja. Die wissen auch immer richtig Bescheid.
Cristian Bank
Natürlich. Jeder macht seine eigene Wettervorhersage meistens noch am besten.
Tim Pritlove
Man sieht das ja im astronomischen Bereich, man ist ja durchaus so, dass äh die die Amateure äh.Einfach etwas mitbringen, was was äh quasi die Profis oft nicht haben, nämlich irgendwie die Zeit und die Ruhe sich auf irgendwas äh super Spezielles zu konzentrieren und äh ja schon viele Asteroiden und äh andere Himmelskörper äh auch von Amateuren ähm.Entdeckt worden, gibt's im meteorologischen Bereich auch so Nischen, die ja jetzt vielleicht auch für den Wetterdiensten so erstmal nicht abgedeckt werden und wo noch ein bisschen Potenzial ist für so.
Cristian Bank
Ich bin jetzt nicht ähm in einem Wetterdienst, aber was mir auffällt,ist, dass äh Wetterdienste zunehmend dazu übergehen, ähm sich auch Rückmeldungen zu holen.Aus der Bevölkerung. Also wenn wir zum Beispiel den Deutschen Wetterdienst annehmen, ist ja ein äh,sehr, sehr fortschrittlicher und moderner Wetterdienst, der der auch äh in dem Bereich der numerischen Wettervorhersage und der digitalen Kommunikation sehr fortgeschritten ist,Die haben eine wirklich tolle App entwickelt und diese App des Deutschen Wetterdienstes.Erlaubt jedem Einzelnen eine Rückmeldung zu geben, ja zu dem Wetter. Was beobachte ich grade bei mir vor Ort? Und wenn man sich das mal anschaut, man kann sich das in der App tatsächlich anschauen, alle Rückmeldungen, die da einlaufen und das vergleicht mit der Vorhersage des Wetters.Dann sieht man wo es genau passt, wo's vielleicht Abweichungen gab und so weiter. Das heißt, wir haben hier eine.Wenn man so ein Schwarmintelligenz, die genutzt wird, um auch eine Rückmeldung in die Wettervorhersagen zu holen und ich glaube, das ist ein Bereich, der ähm der sehr interessant ist.Und äh ich kann mir vorstellen, dass die Wetterdienste das äh durchaus auch auswerten und diese Rückmeldung sich einholen. Ob man jetzt als Amateur-Wettervorhersager oder Beobachter,ähm Sachen Dinge entdeckt in in den Wettervorher, äh in dem Wetterphänomen, die es vorher noch nicht gab, das weiß ich nicht, das kann ich nicht sagen, dazu bin ich kein Fachmann, aber ich glaube, hier geht's in erster Linie tatsächlich um die um die Rückmeldung äh zu den Vorhersagen.
Tim Pritlove
Underground, die haben, glaube ich, damit angefangen seiner Zeit äh mit der App, also diese Idee ist ja vor einigen Jahren so geboren worden, dass man quasi so das Wetter nicht unbedingt nur aus äh,Vorhersagen macht, sondern eigentlich aus äh Berichterstattung einfach von den Leuten selber hier regnet's jetzt gerade.Zumindest eben zusammenbringt. Schön zu sehen, wenn das dann auch irgendwann wieder in diese Modelle einfließen kann, weil das ist ja immer so auch das Ding, gerade bei so modernen Algorithmen wie Machine Learning, die ja sicherlich hier auch eine große Rolle spielen, weilIrgendwann hat man auch einfach zu viel Daten. Also oder irgendwann ist es auch einfach zu komplex beziehungsweise es gibt so eine Vielzahl von Parametern, an denen man drehen kann, dass dann auchirgendwann man einfach gar nicht mehr weiß, okay äh.Ich kann hier gar nicht mehr so eine klare Logik aufbauen, dass wenn dies dann das und dann jenes, sondern das sind einfach alles ja chaotische Systeme, einfach äh die ganze Thermodynamik, was da alles irgendwie zusammenkommt, sind einfach chaotische Systeme, die natürlich zwangsläufig irgendein Ergebnis bringen, aber es lässt sich einfach nicht so ohne WeiteresVorhersagen. Man kommt vielleicht immer auf 99 Prozent, aber für dieses letzte äh Prozent, da geht dann immer schnell alles ausm Leim. Und ähm.Ist ja so ein bisschen so dieser Ansatz, na egal, äh wir müssen gar nicht alles verstehen, was die Daten sagen. Wir haben einfach nur einen Ansatz, dass wir sagen, okay, das sind die Daten, das ist das Ergebnis, was bei diesen Sachen rausgekommen sind. Also können wir irgendwie einfachdurch das fortwährende Betrachten eben mit Deep Learning äh äh Methoden einfach diese Wahrheit aus diesen Daten rausmachen, ohne sie selber wirklich,verstanden zu haben. Man kann einfach nur sagen, sehr wahrscheinlich, dass wenn es so ist, dass dann das passiert, weil es ist vorher ja auch schon mal gewesen.
Cristian Bank
Ja und ich denke, dass dass wir Menschen da auch ein bisschen an die Grenzenunserer Auswertungs- und Interpretationsfähigkeit kommen. Wir haben nun mal ein sehr einfach strukturiertes ähm ja Wahrnehmungssystem und äh,die die Anwendung von künstlicher Intelligenz und Maschinenlearning et cetera in dem Bereich der der Auswertung dieser Messdaten nimmt immer stärker zu. Also die großen Wetterdienste, ist egal, ob's jetzt der deutsche Wetterdienst ist, aber auch der der französische Meteoro France oder der britische,Met Office, andere andere Wetterdienste,wenden mehr und mehr oder versuchen mehr und mehr solche äh Algorithmen in der künstlichen Intelligenz und des Maschinen-Learning auch anzuwenden, um diese Vielzahl an Informationen auszuwerten.
Tim Pritlove
Hat so als Dienstleister, also wie mit wie vielen Wetterdiensten wird hier so zusammengearbeitet so, Pi mal Daumen, also wenn man mal so die Großen heranzieht.
Cristian Bank
Also wie gesagt, äh die die ähm Wetterdienste an sich, das sind erstmal alle Wetterdienste unserer Mitgliedsländer, also die 30 nationalen Wetterdienste. Jedes Land hat ja nach wie vor. Wir haben ja noch keinen europäischen,Wetterdienst an sich. Wir haben ein europäisches Zentrum für nomerische Wettervorhersage. Ähm das ist eine eine Bündelung,europäischer Kompetenzen im Bereich der computergestützten Auswertung und computergestützten Vorhersage von Wetter, rein auf numerischer Basis. Auch hier hat Europa,ähm wirklich die Nase vorn, kann man ganz klar sagen. Das übrigens tatsächlich äh auch äh erkennen die Amerikaner neidlos an, dass hier das europäische Wettervorhersagemodell eines der genausten der Welt ist,Ähm und dieses Zentrum ist tatsächlich auf europäischer Ebene tätig.Aber ansonsten haben wir in den Mitgliedsländern eben die nationalen Wetterdienste. Und wir haben ähm je nachdem wie das äh organisiert ist in den anderen Ländern, natürlich Kontakt zum russischen,japanischen, zum Chinesischen, zum amerikanischen äh Wetterdienst. Wir haben insbesondere ganz viel Kontakt zu den afrikanischen Wetterdiensten.Das verlieren wir ein bisschen aus dem Blick, aber auch hier gilt ja wieder, dass wir,ähm über Frankreich, über Großbritannien, aber auch über andere Länder, sehr enge kulturelle Verbindungen und historische Verbindungen eben nach Afrika auch haben.Dort wird gesagt, wir müssen eigentlich den afrikanischen Kontinent unterstützen,in der Nutzung solcher Wetterdaten, denn wir kriegen sie ja automatisch mit aus dem Orbit von den Satelliten. Ja, die werden ja sozusagen frei Haus mitgeliefert. Da haben wir Afrika immer voll im Blick, fast noch besser als Europa.Und insofern ist es unsere Aufgabe, den Wetterdiensten dort,Methoden an die Hand zu geben, die Software, aber auch das Training der Meteorologen, damit die diese Daten nutzen können, damit die eben für ihre lokale Landwirtschaft, für das, für die Entwicklung des Mikroklimas.Für die Entwicklung der Wüstenregion, aber auch des Regenwalds in Afrika für ähm Fischereidienste, um die Küsten um Afrika herum. Diese Daten nutzen können. Und da haben wir also sehr sehr engen Kontakt auch nach Afrika.
Tim Pritlove
Wie gut ist denn die Wettervorhersage jetzt so geworden? Also ich weiß, das entsteht jetzt hier nicht so primär, aber das ist ja,letztlich das Ziel und ähm damit ja auch,Inhalt der permanenten Diskussion aller Gremien, der Optimierung, der Instrumente et cetera. Man man will's ja halt immer genauer äh wissenund wenn du jetzt sagst, äh okay, das Modell in Europa, das ist äh führen kann, kriegt das so genau hin, dann ist das ja im Prinzip so dieser Versuch,die Erde äh quasi, ich sage mal salopp so als Maschine zu verstehen im Wetterbereich und in irgendeiner Form möglichst nah rankommen äh an an das wo,was man nie erreichen wird, ne? Das ist das ist ja immer so eine.
Cristian Bank
Ja, ja.
Tim Pritlove
Ziel. Wie weit kommt man jetzt? Weil es ist ja schon,einiges passiert. Ich meine, man schaut so auf sein Telefon und man sieht so, aha, okay, Wetter für die nächsten zehn Tage. Das ist schon, finde ich, eine, eine ziemliche Leistung, denn,auch wenn jetzt die Regenwahrscheinlichkeit dann an einem Tag, wo es mal sechzig Prozent hieß, dann dazu geführt hat, dass es doch nicht geregnet hat. Meine bleiben ja immer noch vierzig ProzentÄhm so ist das äh man kriegt schon ein relativ gutes Gefühl dafür, wie sich's vermutlich entwickeln kann. Wie weit kann man überhaupt in die Zukunft blicken, wo ist irgendwann Schluss und wie genauvor allem wie bemisst man diese Genauigkeit?
Cristian Bank
Mhm. Ja, das waren ganz viele, ganz viele Einzelfragen.
Tim Pritlove
Ist, wie gut kann man das Wetter vorher.
Cristian Bank
Genau, wir fangen mal, wir fangen mal oben an. Ähm erstmal ist es.Ja wichtig, dass wie du vorhin schon gesagt hast, Wettersysteme, chaotische Systeme sind, ja, also man kann,nur begrenzt für jeden Ort zu jedem Zeitpunkt des 1:1 vorhersagen. Da gibt's ganz viele Störgrößen. Man müsste eine einen enormen Rechenaufwand hineinstecken. Man müsste quasi,Ganz kleine Zellen, ja von von ein paar Metern Durchmesser einzeln betrachten, um,um jeden Einfluss da äh in Betracht ziehen zu können. Deswegen bleibt immer eine Restunggenauigkeit, aber ich find's wahnsinnig spannend zu sehen, wie sich das tatsächlich weiterentwickelt und wir haben da natürlich mal lange Zeit rein. Ja also man man guckt immer,Man vergleicht die Vorhersage mit dem dann später tatsächlich eingetretenen Wetter. Ja, denn das tatsächlich eingetretene Wetter, das ist ja relativ leicht festzustellen. Das kann man einfach ausm Fenster gucken und sehen oder messen.Und das vergleicht man mit der Vorhersage für den Tag und dann kriegt man prozentual die Abweichung oder die Genauigkeit der Vorhersage gegenüber dem tatsächlich eingetretenen Wetter dann heraus. Und wir hatten in den, sage ich mal, frühen achtziger Jahren.Hatten wir so genau, Vorhersage-Genauigkeiten um die 80 Prozent für die nächsten drei Tage. So gemittelt.Und da gab's auch noch große Unterschiede zwischen der Nord- und der Südhalbkugel, weil auf der Nordhalbkugel entwickeltere Länder sind mit höher entwickelten,dichteren Messstationen, die dann auch noch genauere Bodenwerte hatten, weiterentwickelte Vorhersagesysteme et cetera.Da gab's durchaus nochmal einen Unterschied von 15 Prozent in der Vorhersage, Genauigkeit zwischen Nord und Süd, Halbkugel der Erde. Und das hat sich dann mit der Einführung von mehr und mehr Satelliten immer weiter,geschlossen diese Schere, sodass wir heutzutage fast kaum noch einen Unterschied in der Vorhersage Genauigkeit zwischen der Nord und der Südhalbkugel feststellen können, weil die Satelliten einfach global die Daten in gleicher Qualität liefern.Und wir sind jetzt bei den drei Tage Vorhersagen äh auf einen Wert von ungefähr achtundneunzig Prozent.Das kann man ähm ist wirklich erstaunlich, aber das kann man wirklich so sagen, dass ähm gemittelt in einer Region und das gilt natürlich nicht für den einzelnen Vorgarten. Ich kann mich jetzt nicht in den eigenen Vorgarten stellen und sagen, hier hat's aber nicht geregnet, also stimmt die Wettervorhersage nicht,das gilt schon für eine regionale Region und ich sage mal typischerweise das Aartal ist eine Region, ja, wofür die man sehr gut vorhersagen konnte, was da passiert.
Tim Pritlove
Also da wo wir jetzt gerade die Flutkatastrophe erlebt haben.
Cristian Bank
Da sind wir bei Genauigkeiten von ungefähr achtundneunzig Prozent und ich glaube, das ist schon mal ein ziemlich guter Wert. Wenn wir jetzt auf, sagen wir, fünf Tage gehen,Das ist ja so ein Horizont, ja, Anfang der Woche. Guckt mal, wie plant man sein Wochenende. Und äh guckt fünf Tage äh im Voraus, dann sind wir immerhin noch bei Genauigkeiten von über neunzig Prozent.Vorhersage Genauigkeit. Das finde ich ist auch schon mal ganz eine ganz gute Orientierungswert.Ähm zehn Tage würde ich persönlich ja, kann man mal reingucken, aber sehe ich mehr so als Orientierungswert. Da sind wir heute bei einer Genauigkeit von ungefähr fünfzig Prozent.Das ist nett, aber ähm ob ich da jetzt nun nun viel Geld drauf verwetten würde, weiß ich nicht. Von daher so drei bis fünf Tage,Das ist etwas, was man wirklich sehr, sehr ernst nehmen kann und ich sage an der Stelle gerne noch mal auch ernst nehmen soll.Ich befürchte und haben eben das Aartal kurz angesprochen. Ja, man ist so gewohnt, aus den sechziger, siebziger Jahren. Na ja, guckt mal ausm Fenster, ob's regnet oder nicht und dann weiß man schon, wie's Wetter wird. Das ist heute anders.Heutzutage eine Wetterwarnung über die Systeme kommt, über die App.Man hat aufm Telefon oder über das Radio oder über welche Quelle auch immer und da kommt eine Wetterwarnung,sollte man die wirklich ernst nehmen, denn so genau sind die Vorhersagen,auf jeden Fall, dass man das wirklich ernst nehmen kann, insbesondere für eine für eine Region. Und äh ich glaube, das müssen wir lernen. Das wäre tatsächlich,zuverlässige Wettervorhersagen heutzutage haben, auf die wir uns verlassen können und die wir ernst nehmen sollen, insbesondere in dem Bereich der nächsten Brei, vier Tage.
Tim Pritlove
Wie genau waren denn die Vorhersagen bei der Flutkatastrophe von äh im im Ahrtal.Also es gab ja eine eine solche Warnung. Die war auch,Ich habe sie jetzt nicht gelesen, aber so wie ich das wahrgenommen habe, war die relativ explizites wurde von starken Regenfällen, schweren Starkregen gesprochen und der Chance auf äh Überflutungen.Wie genau war diese Ansage und hat man das Gefühl, dass sich das jemand äh durchgelesen hat.
Cristian Bank
Also äh das das Eis wird jetzt natürlich äh mikrometerdünn äh auf was auf das wir uns da bewegen. Deswegen glaube ich, diese Auswertung müssen wir wirklich den Kreisen überlassen, die da direkt involviert waren.Wir können uns das ja nur von ganz, ganz weit weg angucken, also nicht nur, weil wir ein 36.000 Kilometer Höhe sind, sondern weil wir wirklich in diese in diese Anwendung solcher Vorhersagen äh gar nicht direkt involviert sind. Mein Eindruck,ist nur, dass die die Vorhersage der Niederschlagsmenge,der eigentlichen Wetterlage durchaus verfügbar war. Also die Kollegen vom Deutschen Wetterdienst haben da, glaube ich, eine ganz genaue und hervorragend und absolut zuverlässige Vorhersage geliefert.Was vielleicht schwierig war einzuschätzen vor Ort war die die Interpretation, was bedeutet denn eine solche Durchschnittsregenmenge pro Quadratmeter?Für meine geographische Besonderheit, wo ich in einem Flusstal sitze, wo sich solche Regenmengen dann natürlich sammeln, ja, dann dann ist natürlich eine Regenhöhe von ein paar Zentimetern erstmal schockiert mich nicht, aber wenn ich in einem Tal sitze und mir kommt eine Flut wähle.
Tim Pritlove
Man kriegt sozusagen die Regenmenge von allen anderen auch mit dazu.
Cristian Bank
Dann wird's dann führt es natürlich zu solchen Effekten die man in dem Moment ähm äh vielleicht nicht nicht so eingeschätzt hat.Aber das lag nicht an den Vorhersagen der Regenmengen, sondern das ist dann die die lokale Flutvorhersage, aber ich glaube auch dafür gibt es Modelle. Wir wissen ja,das ist europaweit ein Flutvorhersage-Modell gibt, auch für Inlandgewässer und ich glaube, das ist insgesamt der Punkt, deswegen möchte ich das nochmal unterstreichen. Wir sind in einer Phase,wir sind nicht mehr in den siebziger, achtziger Jahren, wo sowas aus Erfahrungswerten, aus händischen Betrachtungen, aus, ich sage mal, den Gesprächen mit den Altvorderen irgendwie aus Erfahrungswerten oder aus Bauernregeln abzuleiten ist.Sind in Europa in der Lage, mit den Modellen und mit den äh Daten, die wir haben.Sehr lokal, sehr genau und ernstzunehmende Vorhersagen zu machen und ich glaube, wir müssen alle miteinander lernen, dass wir in einer Phase sind, wo man solchen Vorhersagen durchaus Glauben schenken kann und auch sollte. Und dann sollte man sich nicht,zurücklehnen und sagen, na ja, eine Meldung unter vielen, sondern auch muss in der Lage sein, zu erkennen, dass das jetzt wirklich eine ernstzunehmende Warnmeldung ist.Dahin kommen, haben wir, glaube ich, schon sehr, sehr viel gewonnen.
Tim Pritlove
Ein bisschen in die Zukunft jetzt haben wir ja im Prinzip alles beschrieben, was hier funktioniert,der ganze Campus hier in äh Darmstadt arbeitet halt am Betrieb. All dieser Systeme, der Betrieb der Satelliten, Auswertung der Daten, ähm die ganze Kommunikation mit der Wissenschaft und der Technik,um das alles am Laufen zu halten. Es gibt derzeit die Meteorosat-Gero-Synchronen, geostationären Satelliten. Es gibt äh die MetOp äh,Missionen, die halt auf tausend Kilometer Höhe äh mit diesem Polaren äh Orbit die äh Erde beobachten und die Zusammenarbeit,ähm Kopernikus beziehungsweise Zuarbeit zu Kopernikus. Es gibt dann, glaube ich, auch noch so einen kleinen Satelliten, der sich nur für Seewetter noch zuständig äh fühlt, diesen Jason.Satelliten.
Cristian Bank
Das ist ein das ist ein ganz ähm besonders äh besonderer Satellit tatsächlich. Der ist ähm ähm das ist ein Programm, was in den neunziger Jahren schon angefangen hat.Ähm aber was durch Nachfolgesatelliten immer weiter fortgesetzt wird und jetzt mittlerweile ist Eumetsat dafür zuständig für den Betrieb,ähm nennt sich aus der Historie tatsächlich Jason. Ähm war ursprünglich mal ein amerikanisch-französisches Kooperationsprojekt,und sollte äh dienen der Vermessung der Meereshöhe und zum Teil auch der Eisbedeckung.Und es hat sich herausgestellt, was man gar nicht zu Anfang vielleicht in der Form absehen konnte,dass die Beobachtung der der Entwicklung des Meeresspiegels eine eine enorme,Relevanz hat, auch für die Veränderung des Klimas. Ja, heute sprechen wir ja ganz oft, wenn man vom vom Klimawandel sprechen, nicht nur von der Erwärmung, der Atmosphäre, sondern auch den Folgen, die das hat, auch auf die Polgebiete,sekundär damit auch auf die Erhöhung des Meeresspiegels. Und der Nachweis, dass dich tatsächlich der Meeresspiegel in den letzten Jahrzehnten.Um drei, vier Millimeter pro Jahr im Durchschnitt erhöht hat, der ist mit diesem Jason Satelliten gelungen. Ähm heute.Der mit der letzten aktuellen fliegenden äh Familie der Satelliten ähm äh ist das jetzt Teil der Senti Nail Familie übrigens. Also die werden jetzt auch finanziert durch die Europäische Kommission. Das ist der Senti Nail sechs Satellit.Den wir von hier äh betreiben hier von äh von Darmstadt aus. Ähm und ist nach wie vor ein europäisches amerikanisches Kooperationsprojekt.Und äh diese dienen tatsächlich permanent der Vermessung des Meeresspiegels, auch der Wellenhöhen,aus den Wellenhöhen kann man dann zum Beispiel die Windgeschwindigkeit lokal noch ableiten. Aber das sind dann sekundäre Größen, die daraus abgeleitet werden. In erster Linie vermisst man den Meeresspiegel und die Wellenhöhen dadurch.
Tim Pritlove
Mhm. Gibt auch noch eine Isarmission zur Vermessung äh der Eisdeckel, der Kryosatt, der spielt da wahrscheinlich auch noch mit rein.Was sind so die nächsten Missionen, die jetzt anstehen? Wie wird sich das Programm weiterentwickeln, jetzt wo die dritte Generation unterwegs ist? Ich habe so das Gefühl, da kommt noch mehr.
Cristian Bank
Ja ja, also wir haben tatsächlich in den nächsten fünf Jahren hier äh einiges auf dem Zettel. Wir haben insgesamt,elf verschiedene Satelliten, die wir dann in verschiedenen äh Ausprägungen unterstützen, also angefangen von unseren eigenen Satelliten, die wir eben schon genannt haben, den den Meteosatz und den äh den MetOps. Das sind ja unsere ureigensten,Wetter- und Klimasatelliten, die wir entwickeln lassen und dann auch starten und betreiben in vollem Umfange und wo wir auch für die Daten verantwortlich sind und alle Produkte.Bis hin zu den Missionen, wo wir eine Teilrolle, eine unterstützende Rolle spielen. Da gibt's verschiedene Missionen, wo wir zum Beispiel dafür sorgen, dass die Daten,möglichst schnell zu den Nutzern geraten, ja? Weil das ist eine unserer Spezialitäten hier in wir haben Systeme die sehr sehr schnell solche Messdaten von den Satelliten zu den Nutzern schaffen,und äh da unterstützen wir anderer anderer Missionen äh mit unserem System das hinzubekommen.Wir werden aber auch, das darf man äh ähm ja an der Stelle vielleicht mal erwähnen,Wir werden äh für die Europäische Kommission zu einem der größten Betreiber des Sentinell Missionen, also die äh Senti Nate vier und fünf,das sind einzelne Instrumente, die werden wir äh auf unseren Satelliten mitnehmen und dann auch betreiben,Santinel 6 ist der eben wie erwähnte äh der Satellit, der die Meeresspiegelhöhe misst. Den betreiben wir auch,Sentinell drei, das ist eine eher Erdbeobachtungsorientierte Mission, die aber auch äh Meeres äh Beobachtungen macht. Die betreiben wir gemeinsam mit der Esa. Da sind wir also jeweils fifty-fifty zuständig für verschiedene Produkte.Äh in der Zukunft haben wir eine ganz ganz wichtige Mission, die noch dazukommt. Das ist die ähm Vermessung,des menschgemachten Kohlendioxids in der Atmosphäre. Das ist ein bisschen kompliziert,Kohlendioxid an sich ist ja ein normaler Bestandteil der Atmosphäre in einem sehr geringen Prozentsatz. Der entsteht ganz normal durch verschiedene Prozesse, Waldbrände.Vulkanausbrüche, aber auch Zersetzungsprozesse et cetera. Also es gibt immer ein bisschen CO2 in der Atmosphäre.Das wollen wir ja, das ist interessant, aber das macht ja nicht den Klimawandel.Klimawandel wird verursacht durch den durch den Menschen hin zusätzlich eingebrachte CO2 durch die Verbrennung eben von äh Benzin Erdöl, Erdgas et ceteraund dieses menschgemachte CO2, das wird durch den äh nächsten Cent die Nailsatelliten äh vermessen,und äh auch der ist jetzt gestartet in seiner Entwicklung, das heißt äh da sind Instrument und Satellit in der Entwicklung bei der Isar wieder, bei der europäischen Raumfahrtagentur und wir bereiten uns hier auf,Die Auswertung der Daten vor, das heißt, wir haben die Software, die diese Daten dann auswertet, die entsprechenden,Messwerte und und äh CO2-Werte extrahiert und verteilen dann diese Daten an die verschiedenen Institute und wir betreiben den Satelliten auch. Also wir hatten insgesamt tatsächlich hier,ähm äh fünf Sentinell-Missionen dann betreiben. Das ist schon mal ein wichtiger, zukünftiger Schritt auch für.Und ähm ja, ein ganz wichtiges Thema wird natürlich auch ähm die Frage sein, inwieweit,zum Beispiel sogenannte also die mehr und mehr kommerziell ausgerichteten Raumfahrt äh Unternehmen,die weg äh gehen, entweder weggehen von staatlichen Raumfahrtaufträgen, sondern sich eigene kommerzielle Nischen suchen,oder Start-ups. Ja, junge Unternehmen, die die ähm verfügbaren Daten nutzen, um daraus eben Produkte zu entwickeln und Auswertungen zu machen, wie wir das vorhin schon mal angesprochen haben, auf der Basis von von Daten in den Clouds.Äh inwieweit wir die mit einbeziehen in unseren unseren Netzwerk, also auch hier wird sicherlich eine Rolle spielen,bei in dem Netzwerk äh all dieser dieser Unternehmen, die dann kommerziell basierte Daten liefern, die aber auch in äh in dem Netzwerk verfügbar sein sollen, ne, von von Forschungsinstituten und kommerziellen Anwendern.Da wird sicherlich auch eine eine Kernkompetenz haben, eben zur Verfügung stellen dieser Daten.
Tim Pritlove
Es gibt noch so eine Windmission von der Esa Eolus. Da gibt's auch eine Kooperation mit.
Cristian Bank
Ja genau. Ist tatsächlich ein Satellit, der fliegt schon. Das ist ein ein äh ja wie soll man sagen, ein Demonstrator, der Isar.Ähm da sollte ich vielleicht ein bisschen ausholen. Das ist nämlich wirklich sehr, sehr interessant,Und zwar hat man sich gefragt, ähm wie schaffen wir es, vom Weltraum aus, von einem Satelliten direkt die Windgeschwindigkeit in der Atmosphäre zu vermessen?Bisher guckt man sich zum Beispiel die Höhe der Wellen auf dem Meer an und die Richtung, in der diese Wellen sich fortbewegen,leitet daraus ab, wie denn wohl der Wind sein muss, der da drüber hinweg weht, um solche Wellen zu generieren und versucht daraus eben Windrichtung und Windstärke abzuleiten über den Meeren, als Beispiel oder man schaut sich Wolken an und schaut, wie schnell,die Driften und leitet daraus ab, wie denn wohl der Wind in der Höhe dieser Wolken sein muss, damit die Wolken in dieser Geschwindigkeit driften und so weiter, sind aber sekundäre Ableitungen der Windgeschwindigkeit,Man hat sich gesagt, es muss doch möglich sein, die Windgeschwindigkeit direkt zu messen,Zum Beispiel, indem man mit einem Laser, einem sehr starken Laser in die Atmosphäre leuchten.Und dann durch Staubkörner oder Wassertröpfchen reflektiertes Laserlicht? Wieder auffangen.Und dann quasi den Doppler-Effekt messen, also die Verschiebung der Wellenlänge des Lasers durch die Bewegung dieser Tröpfchen oder der Staubkarne.
Tim Pritlove
Aber den Abstand der der der Staubkörnchen die man.
Cristian Bank
Die Geschwindigkeit. Durch den Dopple-Effekt messen wir die Geschwindigkeit. Denn dieses Tröpfchen, die dieser Tröpfchen oder diese Staubkorn in der Atmosphäre in dem Moment hat.Man kann sogar soweit gehen, dass man einzelne Moleküle in der Atmosphäre.
Tim Pritlove
Ach so, also man schießt so quasi so quer in die Atmosphäre rein, nicht so direkt von oben nach unten, sondern quasi schräg. Ah ja. Okay.
Cristian Bank
Schickt da rein und misst dann das reflektierte Licht und je nachdem, ob das eine längere Wellenlänge bekommen hat, das reflektierte oder eine kürzere, weiß man, ob das Teilchen auf einen zugeflogen ist oder von einem weggeflogen ist.In der Blickrichtung des Lasers kann man dann die Windgeschwindigkeit sozusagen direkt messen.
Tim Pritlove
Mhm. Verstehe.
Cristian Bank
Dieser dieser Prototyp ist von der Isar mit mit äh einem enormen technologischen Herausforderungen tatsächlich,ähm entwickelt worden. Der wurde 2018 gestartet,äh ist jetzt immer noch in Betrieb, hat also seine Erwartung auch voll erfüllt, hat wirklich hervorragende Daten geliefert im Höhenprofil, ja, also nicht nur am Boden, wie man das zum Beispiel bei diesen Meereswellen rauskriegen könnte, da ist ja dann nur der Wind am an der.Bei den Wolken, wo es in einer bestimmten Höhe ist, sondern dieser Laser kann das gesamte Profil über die Höhe der Atmosphäre vermessen, hat dort herausragende Messwerte erreicht und da haben wir gesagt, dieser Demonstrator hat so gut funktioniert,dass es interessant wäre, so was tatsächlich auch operativ zu haben, also ein Satellit, der äh so was kontinuierlich dann misst und in die Wettermodelle einspeisen kann und daher,jetzt eine Überlegung gemeinsam mit der Isar, ein Nachfolgesatelliten zu entwickeln, der dann also operativ tatsächlich fähig äh ist, über fünf, sechs Jahre Lebensdauer,Solche Daten zu liefern und dann gibt's danach wieder Nachfolgesatelliten, sodass du es also Bestandteil der Satellitenfamilie wird.
Tim Pritlove
Auch im Rahmen von ist das dann auch wieder irgendein Sentinel oder weiß man.
Cristian Bank
Nehmt dadurch, dass das wirklich tatsächlich eine reine Wetteranwendung ist oder eine atmosphärische Anwendung,ist es, ähm wie ich vorhin sagte, ja wir sind ja komplementär sozusagen mit dem Kopernikus-Programm, ist das also hier im Satellit der, wenn er denn so kommt und so beschlossen wird, das muss natürlich durch die Mitgliedsstaaten erstmal noch so beschlossen werden, das ist noch nicht der Fall,Aber wenn es kommt, dann wird es tatsächlich ein Satellit.
Tim Pritlove
Okay und würde also hier noch die Familie noch um was Lustiges ergänzen.
Cristian Bank
Lustig und vor allen Dingen auch toll und gut.
Tim Pritlove
Naja, das meine ich damit auch.
Cristian Bank
So toll ist, sondern weil die Daten gezeigt haben, also in den verschiedenen Wettermodellen, äh in die diese Daten eingespeist wurden, haben die also wirklich zu einer signifikanten Verbesserung der Vorhersage-Genauigkeit geführt.
Tim Pritlove
Kann ich mir vorstellen. Ich meine, wie hoch ist die Auflösung, also äh der der unterschiedlichen Höhen, die man damit erreichen kann. Im Prinzip beliebig, also so im Meter Abstand oder zehn, hundert, weiß man noch nicht genau.
Cristian Bank
Also man muss immer abwägen zwischen der Datenmenge.
Tim Pritlove
Und was ist sinnvoll, ja.
Cristian Bank
Man bekommt und und was die Modelle auch verarbeiten können, ne. Wir haben ja äh so ein Modell, so ein Wettermodell funktioniert ja, indem man die Atmosphäre quasi in kleine Würfel zerschneidet.In der Höhe, aber auch in der Fläche,und jedem jedem Würfel Messwerte zuordnet. Jeder Würfel hat eine Temperatur, jeder Würfel hat eine Luftfeuchtigkeit, ein Druck et cetera und dann verrechnet der Computer die Entwicklung und die gegenseitige Beeinflussung dieser Würfe.
Tim Pritlove
Was ist da die klassische Kantenlänge, Kilometer?
Cristian Bank
Kilometer so ungefähr, ja.
Tim Pritlove
Mhm. Ja.
Cristian Bank
Grob mal gesagt, ne? Also die größeren Wetterdienste, die sich auch die größeren Computer leisten können. Wie gesagt, der deutsche Wetterdienst ist hier wirklich vorne mit dran, auch weltweit, aber auch Meteoro France und und Met Office et cetera.Aber auch die Amerikaner sind hier ganz vorne dran, die leisten sich größere Computersysteme, die können mehr Rechenaufwand verarbeiten, die haben dann auch kleinere Kantenlängen der Würfel, ja, weil sie's halt verarbeiten können,ähm und die sind so im Kilometerbereich. Und wenn man, ich bekomme noch mal zurück auf diese App vom Deutschen Wetterdienst, da kann man tatsächlich sich diese numerischen Wettervorhersagen anschauen und die sind im Kantenbereich von einem Kilometer 1,2 Kilometer.So und äh dementsprechend wird auch dieser Höhenauflösung, dieses Satelliten, dieses Wind,Messungsateliten wird in dem Bereich liegen, dass man diese Wettermodelle optimal füllen kann. Ja, so eine höhere Auflösung bringt nix, weil das verarbeitet, das wird dann wieder verschmiert in einem Würfel. Das würde nix bringen. Eine gröbere Auflösung,bringt unter Umständen trotzdem noch was,aber wenn man zu grob wird, dann geht der Effekt wieder verloren. Also man versucht da möglichst dicht dran zu sein an einer sinnvollen Verarbeitbarkeit der Daten.
Tim Pritlove
Sonnensynchronen Obit unterwegs ist, würde man aber immer quasi die ganze Welt abdecken, äh so im 24stunden-Modus. Ist einfach schon ein bisschen schade, wenn man so schön den Wind messen kann, wenn man das an jeder Stelle immer nur alle 24 Stunden,macht. Würde man dann nicht gleich auch mit mehreren Satelliten parallel arbeiten wollen.Oder stelle ich mir das jetzt schon zu wild vor? Man ist schon ganz froh, wenn man überhaupt alle 24 Stunden mal ein Update kriegt.
Cristian Bank
Also wenn sie mich heute Nacht nochmal fragen, kann ich ihnen nochmal aus meinen wildesten Träumen bisschen was erzählen und da kommen natürlich ganz, ganz viele Satelliten vor.
Tim Pritlove
Ich bin interessiert.
Cristian Bank
Aber wenn ich tagsüber äh abwägen muss zwischen den den Kosten, die solche Satellitensysteme ja auch immer haben.Und dem Effekt, den sie bringen können, wäre es mir.Fast wichtiger, dass wir einen Satelliten bekommen, der kontinuierlich über die nächsten Jahre, ja, also nicht nur einen, der mal fünf Jahre funktioniert und dann wieder quasi ausfällt und dann haben wir wieder ein paar Jahre nix, sondern dass wir ein System etablieren, in dem kontinuierlich,immer diese Satellitendaten zur Verfügung stehen. Ähm zu einem bestimmten Zeitpunkt über einem gegebenen Punkt der Erde,das ist für mich viel wichtiger diese Kontinuität der Messdaten hinzubekommen als jetzt noch mehrere Satelliten parallel zu fliegen.Und daher wäre ich schon sehr, sehr froh, wenn wir, wenn wir einen Satelliten in Orbit operativ in Betrieb nehmen könnten.
Tim Pritlove
Verstehen, aber ich bin ja von solchen Zwecken befreit und überlege mir so, wenn man halt immer äh zur selben Tageszeit äh am selben an einem Ort ist, dann verpasst man ja sozusagen auch.Die Nacht und man verpasst irgendwie den Morgen und den Abend und das ist ja grade bei Wind so eine Sache.
Cristian Bank
Aber mit dem Verpassen ist das so eine Sache. Wir wir müssen hier noch mal einen Schritt zurückgehen, dass nicht nur die der unmittelbare Messwert eine Aussagekraft hat, sondern.Messwert im Konzert aller Messwerte. Das heißt, wenn wir einen Messwert an einer Stelle bekommen, können wir durch Extrapulation über dieses gesamte.Ja dieses dieses Netzwerk an Würfeln hinweg sozusagen extra polieren in die anderen Würfel hinein.Messwert nicht haben, haben wir keine Idee, was da passiert. Aber wenn wir einen Messwert haben, haben wir eine Stützstelle sozusagen, einen Fixpunkt.
Tim Pritlove
Mhm. Dann kann man den Rest reinrechnen.
Cristian Bank
Ableiten, genau und das ist ein ganz wichtiges äh ganz wichtiger Effekt, den wir den wir hier sehen und dadurch stabilisiert ein solcher Messwert,die anderen Ableitungen, die anderen Messwerte noch mal zusätzlich und das gibt den positiven Effekt. Also ist gar nicht so schlimm, dass wir nicht für jeden Würfel, zu jeder Zeit, zu jedem Zeitpunkt einen bestimmten Messwert haben, sondern,Dass wir einfach wissen, an welche zu welchem Zeitpunkt für welchen Würfel wir eine Stützstelle bekommen.
Tim Pritlove
Verstehe. Ich unterstütze das. Ähm und es macht auch alles äh sehr viel Sinn. Ich äh würde sagen, an der Stelle können wir,das Gespräch dann auch äh zu Ende bringen. Das war sehr äh ein sehr interessanter Ausblick äh äh auf all das, was äh bei Omezard äh gemacht.Großen Konzert aller äh Organisationen. Ich sage vielen Dank.Ja und das äh war's für heute bei Raumzeit. Das war die 97. Ausgabe. Ihr wisst, bald geht's wieder weiter und bis dahin sage ich.

Shownotes

RZ096 Erdähnliche Exoplaneten

Die Suche nach Planeten außerhalb unseres Sonnensystems nimmt Fahrt auf

Exoplaneten sind eine der jüngsten wissenschaftlichen Disziplinen, doch beschleunigt sich die Zahl der Erkenntnisse durch zahlreiche erfolgreiche Deep Space Missionen und weiterer Forschung in diesem Bereich immer mehr. Nach der ersten Runde der reinen Detektion dieser fernen und schwer zu findenden Körper, geht jetzt auch die Suche nach Planeten los, die Gemeinsamkeiten mit der Erde aufweisen.

Dauer:
Aufnahme:

Lena Noack
Lena Noack

Wir sprechen mit Lena Noack, Professorin und Leiterin der Gruppe Geodynamik und Mineralphysik planetarer Prozesse am Institut der Geowissenschaften der FU Berlin. Sie rückt den Exoplaneten auch mathematisch zu Leibe indem sie in komplexen Modellierungen die Entstehung kompletter Sonnensysteme simuliert um den letzten Geheimnissen der Exoplaneten auf den Leib zu rücken.


Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Tim Pritlove
Hallo und herzlich willkommen zu Raumzeit dem Podcast über Raumfahrt und andere kosmische AngelegenheitenMein Name ist Tim Pritlove und ich begrüße alle hier zu Ausgabe 6undneunzig von Raumzeit und ja äh heute geht's. Wie sollte es anders sein? Wieder um ein neues Thema und in gewisser Hinsicht knüpfen wir auch an letzte Sendungen an.Trotzdem,steigen wir in eine Wissenschaft ein, die wir schon mal beleuchtet haben in Raumzeiten ähsechzig, habe ich nämlich mit Heike Rauer gesprochen und da ging's um Exoplaneten und wir haben uns mal so angeschaut, wie sich diese Szene entwickelt, die ja irgendwie erst 1995 so richtig dasLicht der Welt gesehen hat. Ja und äh sich dann sehr schnell entwickelt hat und wir haben viel über Techniken geredet, wie man diese Exoplaneten entdeckt.Ein bisschen tiefer eintauchen und mal schauen was eigentlich sich in den letzten,fünf Jahren vor allem getan hat, seitdem diese Sendung aufgenommen wurde und dazu begrüße ich meine Gesprächspartnerin, nämlich die Lena-Lena Noak. Hallo.
Lena Noack
Ja hallo, freut mich sehr hier zu sein.
Tim Pritlove
Mich auch, ähm denn äh du bist ja äh anerkannte Expertin in diesem Bereich, äh arbeitest an der FU Berlin, wenn ich das richtig äh sehe im Institut für Geowissenschaften, bist dort Professorin,wie's so schön heißt,Das ist äh im Maus voll, wenn ich das mal so sagen darf. Sprich mit allen Worten ähm hat an den ideologischen Realitäten von Planeten dran.Da würde man dann eigentlich mal vermuten, da steckt ja dann wahrscheinlich so eine Lebensgeschichte mit Biologiestudium dahinter, aber dem scheint ja auch nicht so zu sein, oder?
Lena Noack
Nee, tatsächlich überhaupt nicht. Ähm als ich schon klein war, habe ich mich immer gefragt, was möchte ich später werden? Und da hatte ich eigentlich nur zwei Optionen. Astronauten oder Mathematiklehrerin?
Tim Pritlove
So so diese klassischen äh Optionen so.
Lena Noack
Klassischen Optionen ganz genau. Ich bin dann tatsächlich erstmal in die Richtung Mathematik gegangen, habe eine Humutuniversität, Mathematik studiert,Aber mein Fable für Planetenwissenschaften, für Astronomie, das hat mich mein ganzes Leben begleitet. Also das da wollte ich so unglaublich gerne was mit machen,Und als das Mathematikstudium langsam Richtung Ende ging, war dann die Frage, okay, gehe ich in eine Versicherung, arbeite ich für eine Bank,oder zwei Gebäude weiter. Dort äh war tatsächlich das DLR Institut für Planetenforschung.Und ähm da hat's mich einfach hingezogen, da war ich bei der langen Nacht der Wissenschaften immer. Ich fand das unglaublich spannend, was dort gemacht wurde,und äh dann hat's tatsächlich auch geklappt, dass ich nach dem Studium, nach dem Mathematikstudium als Quereinsteigerin, dort ähm in der Arbeitsgruppe für die Planeten Physik äh angesiedelt wurde. Eine Doktorarbeit geschrieben habe,mich dann tatsächlich mit diesem Thema beschäftigt hab, was passiert eigentlich im Inneren von Planeten,Gesteinsplaneten, also Planeten wie Erde, Venus, Maß in unserem Sonnensystem.Was ich total faszinierend fand, also im Mathematikstudium ähm bin ich auch so ein bisschen mehr in die Programmiererrichtung gegangen, also nennt sich das,und ähm habe mich dort damit beschäftigt, wenn man ein gebogenes Rohr hat, wie dann Flüssigkeiten, in welcher Geschwindigkeit dort langfließen und ob Turbulenzen entstehen und so weiter.Und ähm dann habe ich mich beim DLR vorgestellt und habe gelernt, tatsächlich erst in dem Moment, dass auf ganz langen geologischen Zeitsgeilen, also wirklich Millionen bis Milliarden Jahren im Inneren von der Erde, der Gesteins meinte sich ziemlich ähnlich.Und das fand ich unglaublich faszinierend. Also das.
Tim Pritlove
Ähnlich bewegt wie das Wasser im Rohr.
Lena Noack
Ganz genau, also genau diese Bewegungen, dass man also Konjktionen hat, dass tatsächlich Material sich bewegt. Wie gesagt, es ist eine völlig andere Geschwindigkeit, von der wir da reden. Das sind so Zentimeter pro Jahr Geschwindigkeit,Aber genau das passiert in der Erde auch und das das fand ich unglaublich interessant, unglaublich spannend.Und äh dadurch bin ich dann eingestiegen in das Gebiet, dass man das Innere oder die Mantelkonvention im Inneren von diesem Planeten modelliert,Das hängt mit ganz vielen Themen Spektrin zusammen, zum Beispiel die Frage, warum wir Plattentektorik auf der Erde haben. Hängt halt damit zusammen, wie sich die Massengesteinsmassen im Mantel von der Erde, also ein Gesteinsmantel, von der Erde, bewegen.Oder wie viel Vokanismus wir haben, hängt genauso damit zusammen,Und ähm das finde ich so toll, dass wir an der Oberfläche von von der Erde oder auch von anderen Planeten Hinweise darauf bekommen, was tatsächlich im Inneren vom Planeten passiert.
Tim Pritlove
Wann war diese Doktorarbeit?
Lena Noack
Das habe ich 2tausend8 angefangen und ähm 2tausend12 dann beendet.
Tim Pritlove
Okay, das heißt zu dem Zeitpunkt war auch schon klar, Exoplaneten gibt es.
Lena Noack
Ganz genau. Und das hat auch meine Doktorarbeit von Anfang an beeinflusst, äh weil tatsächlich im ersten Jahr würde ich sagen, als meine Doktorarbeit angefangen habe,hat denn genannt sie war in der involviert die den ersten Gesteinsplaneten entdeckt hat,hat es natürlich sofort angesteckt äh mit ihrem Interesse und äh mit der Euphorie.Ähm wir den ersten Planeten außerhalb von unserem Sonnensystem gefunden haben, von dem wir ziemlich genau wissen, dass es ein Gesteinsplanet sein muss.
Tim Pritlove
Warum wussten wir das?
Lena Noack
Das ist zwar Einheit von den wenigen Planeten, ähm auch heute haben wir noch nicht so wahnsinnig viele davon, wo wir die Masse und den Radius relativ genau bestimmen konnten,ähm das äh ist für tatsächlich dazu, dass wir wissen, wie schwer ist der Planet,und ähm wenn wir uns einfach im Sonnensystem anschauen, äh wie sich so diese Schwere oder die Dichte von dem Planeten von Merkur bis ganz weit nach draußen äh Uranus Neptun verschiebt,sieht man, dass die die höchste Dichte ähm taucht tatsächlich bei den Gesteinsplaneten auf,und ähm das können wir dann damit auch äh vergleichen mit den Dichten, die wir dann von Exoplaneten messen und wissen, okay, entweder muss es halt ganz große Wassermengen geben oder Gasmengen, wie jetzt beim Jupiter zum Beispiel,Oder ist es so eine hohe Dichte, dass man's nur erklären kann, dass der Planet aus ähm Gemisch, aus Eisen ähm ähm Gestein besteht.
Tim Pritlove
Mhm. Bevor wir auf diese ganzen äh Details äh kommen, um vielleicht das nochmal kurz äh abzuschließen, sodass die Doktorarbeit gemacht. Wann kam diese Professur dann in der FU dazu?
Lena Noack
Ein paar Jahre später, ich war erstmal für fünf Jahre im Ausland ähm in Belgien, in Brüssel.Und ähm habe dann dort schon meine eigene Forschungsrichtung entwickeln können und konnte dann 2017 die Professur an der FU Berlin übernehmen,und äh jetzt auch meine eigene Arbeitsgruppe aufbauen und.
Tim Pritlove
Professor ist jetzt genau für was? Für welche Disziplin?
Lena Noack
Das ist tatsächlich für diese geodynamische Modellierung auf basierend auf der Information, die wir von den Materialien im Inneren haben, also Mineralphysik, um globale, planetare Prozesse zu verstehen, deswegen auch dieser sehr, sehr lange und komplizierte Name.
Tim Pritlove
Ja, aber gab's den sozusagen schon schon immer, ist das eine relativ neue Lehrstuhl.
Lena Noack
Das war tatsächlich geplant als Junior-Professur. Ähm die jetzt als Universitätsprofessur weiterläuft. Also das gab's tatsächlich vorher noch nicht. Okay, das heißt, da ist auch so das ist was.
Tim Pritlove
Okay, das heißt, da ist auch schon schon Exo-Planeten sozusagen schon im äh im Hinterkopf oder.
Lena Noack
Ganz genau. Mhm.
Tim Pritlove
Im Vorderkopf vielleicht. Genau und ähm du hast aber jetzt auch schon bei Missionen quasi mitgearbeitet oder zugearbeitet, wenn ich das richtig sehe.
Lena Noack
Also ich ähm habe halt bei der Platomission ähm bin ich im ähm.
Tim Pritlove
Also Plato ist die ähm Exoplanetenmission der Esa, die in Planung ist. Sie soll irgendwie 2026 starten.
Lena Noack
Genau, genau und da bin ich im Konsortium involviert und ähm,da ging's für mich auch darum, es war auch während meiner Doktorarbeit noch ähm zu schauen, warum brauchen wir eigentlich die Platemission,brauchen wir also Plate wird ähm viele neue Planeten entdecken, auch um sonnenähnliche Sterne, vor allem äh auch kleinere Planeten Planeten, die ungefähr so groß sind wie die Erde,Das aber mit einer sehr hohen Genauigkeit den Radius bestimmen beziehungsweise später dann mit Nachfolgemessung dann äh wird auch die Masse relativ,bestimmt werden und die Frage ist, warum brauchen wir das eigentlich? Warum müssen wir wissen ob äh einen Planet zu groß wie der Mars ist oder so groß wie die Erde.Warum warum ist das überhaupt wichtig? Und ähm dadurch hat mich ähm das dann auch sehr stark in die Exoplanetenrichtung geschoben in meiner Forschung,diese Fragestellung, also die gerade diese Sachen, die wir beobachten können,Sind nicht viele für Exoplaneten. Ähm es gibt ein paar Daten, die wir finden können, aber wir haben natürlich nicht die gleiche äh Auswahl an Daten, als wenn wir jetzt zum Mars fliegen würden und auf der Oberfläche landen.Aber was sagen uns die Daten tatsächlich aus über diese Planeten? Und das ist das, womit ich mich beschäftige.
Tim Pritlove
Dann würde ich ganz gerne noch mal so zum Einstieg, weil ich hatte das mit der Heike Rauer zwar auch schon gemacht, aber die Geschwindigkeit der Entwicklung ist hier so schnell, deswegen ist es, glaube ich, ganz sinnvoll, das noch mal so ein bisschen ähm zusammenzufassen.Wie sich das hierzu entwickelt hat seit 1995. Dann ging's äh ja los. Dort wurde der erste Planet um einen sonnenähnlichen äh Stern.Gefunden. Gab's auch einen Nobelpreis für, wenn ich das richtig sehe.
Lena Noack
Genau, vor zwei Jahren.
Tim Pritlove
Aha. Ähm ja, kann man mal machen. Was hat das ausgelöst? Wie ging's weiter und wo sind wir jetzt?
Lena Noack
Also das ist Experte geben könnte oder müsste, darüber hat man natürlich schon lange spekuliert gehabt, ganz klar und ähm die ersten exoplanierten Detektionen war tatsächlich äh in den Ende von den achtziger Jahren,Aber damals war man sich so unsicher. Man hat nicht geglaubt, dass man wirklich einen Exemplar Planeten gefund,es sind ja auch sehr große Störsignale, mit denen man umgehen muss und ähm der Planet wurde tatsächlich erst äh ja 20 Jahre später ungefähr äh bestätigt.
Tim Pritlove
Man hat ihn gesehen, man man meinte, es könnte das.
Lena Noack
Gesehen, da ist was. Genau, aber man konnte es nicht eindeutig sagen und ähm.
Tim Pritlove
Keinen Nobelpreis.
Lena Noack
Gab's keinen Nobelpreis. Ähm es wurde auch ein paar Jahre später um einen Posausterstern herum. Auch Exoplaneten äh gefunden.Aber das ist nicht so spannend, ne, also das ist äh bewohnbar sind diese Planeten nicht, wenn man einen Posausterstern direkt neben sich hat, ne. Also die Strahlung, die da auf einen zukommt, da brauchen wir gar nicht drüber reden.
Tim Pritlove
Okay.
Lena Noack
95 war jetzt nicht nur das Tolle, dass halt wirklich ein Exot Planet um ein so einen ähnlichen Stern gefunden wurde, sondern den Exoplanet, der dort eigentlich nichts zu suchen hatte.Wein in Gasriese, wie man sich den Jupiter vorstellen muss, allerdings so nah am Stern dran, dass er eine extrem heiße Temperatur hat,man musste die gesamte Überlegung wie sich Planeten bilden, wo sich Planeten bilden, wie ähm,normal unser System ist im Vergleich zu anderen Sternsystem komplett überdenken,Und dafür ist äh der Nobelpreis mehr als gerechtfertigt, auf jeden Fall.Und ähm danach ähm so die nächsten zehn Jahre wurden zwar immer mehr Planeten entdeckt, auch mit unterschiedlichen Methoden und je nachdem, welche Methode man verwendet hat, wusste man äh ungefähr, was die Masse ist oder die die minimale Masse,oder den Radius.Und ähm nur wenn man unterschiedliche Methoden miteinander kombiniert, ähm kann man tatsächlich die Masse und den Radius von dem Planeten relativ genau bestimmen und kriegt dann wirklich eine Vorstellung, um was für eine Planetenklasse handelt es sich da eigentlich?Und da war dann der Durchbruch ähm ja gut zehn Jahre später ähm riesengroß, also erst von der Coro Mission ähm äh Coro sieben B und kurz danach von der Keplermission, die ja auch tausende von Exoplaneten entdeckt hat, äh über zehn Jahre hinweg,hat dann auch den also auch ein Gesteinsplaneten entdeckt, von dem wir uns wirklich sicher sind, ähm dass er hauptsächlich aus äh Gestein und Metallen, also hauptsächlich Eisen wahrscheinlich besteht.
Tim Pritlove
Wenn man sich jetzt mal unsere Galaxis vorstellt, wie weit schauen wir, wo sind bisher die Planeten entdeckt worden, wie nah dran ist das an uns.
Lena Noack
Also sehr unterschiedlich. Ähm tatsächlich in dem nächsten Nachbarstern von uns im Alpha Zentauri-System. Dort haben wir mindestens ein Exempel Planeten gefunden, also es ist die in der direkten Nachbarschaft.Und äh geht aber weiter über hunderte, tausende von Lichtjahre entfernt. Auch dort sind immer noch Experienten gefunden worden.Das Problem ist, ähm je näher sie dran sind, desto besser können wir sie beobachten,Also das bedeutet zum einen, dass wir halt die die Messung für für den Radius, äh wenn es ein Planet ist, der von unserer Sicht aus vor dem Stern,die Umlaufbahn äh hat und dementsprechend wir an den Transitz von diesem Planeten beobachten können. Das hilft uns, den Radius zu bestimmen,oder ähm wir können auch uns anschauen, wie bewegt sich ein Stern im,im Weltraum und wenn praktisch ein Planet um den Stern herumkreist mit einer relativ hohen Masse, dann führt es dazu, dass sich auch der Stern praktisch auf uns zubewegt und wieder ein bisschen von uns wegbewegt und das in der in der Periodiziertis.Und das hilft uns dann äh zu bestimmen, was für eine Masse der Planet hat oder überhaupt den Planet ist zu entdecken. Und ähm,Wenn wir uns äh tatsächlich noch mehr Informationen von dem Planeten haben wollen, also zum Beispiel hat der eine Atmosphäre, woraus besteht die Atmosphäre, dann brauchen wir halt auch ein sehr gutes Signal von der Atmosphäre, um tatsächlich,bestimmen zu können, was für Moleküle sind in dieser Atmosphäre vorhanden. Und das bedeutet, alles, je näher der Planet an uns dran ist, desto leichter ist es, ihn zu beobachten.
Tim Pritlove
Okay, aber das heißt, alles, alle Planeten, die wir jetzt bisher gefunden haben,sind auch relativ nah an uns dran. Das war also ein bisschen.
Lena Noack
Immer noch relativ dran, ganz genau.
Tim Pritlove
Genau, also wir wir blicken nicht sehr weit ins All, weil würden wir sehr viel weiter blicken, würden wahrscheinlich die Augen, die wir haben, bisher nicht ausreichen.Dass eben nicht so ist wie Sterne, die wir ja was weiß ich schon bis fast äh an den Urknall ran in irgendeiner Form aufgespürt bekommen diese ganzen Planeten sind halt eigentlich fast nicht zu sehen.Wir sehen sie nur indirekt, wir sehen sie indirekt über ihre gravitative Wirkung, wir sehen sie indirekt über ihre Verdunkelung von Sternen, so sie denn jetzt sozusagen sich genau zwischen den äh Stern, den sie umkreisen und uns äh dazwischenstellen.Methode habe ich glaube ich noch vergessen.
Lena Noack
Es gibt noch die Methode der direkten Beobachtung.
Tim Pritlove
Ach so ja genau, das ist halt die Frage. Also wie viel könnte man denn schon überhaupt einen direkt sehen? Also.
Lena Noack
Das ist tatsächlich auch eine spannende Sache, ähm wenn man ähm sich im Infrarotbereich, im Bereich ähm einen einen Sternenplanetensystem anschaut und den,das Lichtsignal, das direkt von dem Stern kommt, ausblendet, dann kann man äh die thermische Emission von den Exoplaneten in dem System ebenfalls aufnehmen.Gibt natürlich einige Probleme. Äh die müssen sehr, sehr heiß sein, damit wir tatsächlich ein Signal bekommen, damit wir tatsächlich im Infrarotbereich die thermische Ausstrahlung haben,wenn der Planet sehr nah am Stern dran ist, dann wird der genauso mit ausgeblendet, wenn das Licht vom vom Stern ausgeblendet wird.Es gibt da unterschiedliche Methoden, ähm also das, was ich gerade beschrieben habe, ist, dass man einen sogenannten Honograf baut, also dass man wirklich das Licht direkt von dem Stern ausblendet. Eine andere Variante ist die sogenannte Enterferomatrie.Wo man ähm tatsächlich aus unterschiedlichen Blickwinkeln das äh System betrachtet und ähm,praktisch die die Lichtinformation gegenseitig äh auscanceln und dann was tatsächlich übrig bleibt als ähm Lichtquelle ist dann der Planet,Damit kann man den Planeten sehr gut auch beobachten, sehr nah am Stern dran.Das ist auch so ein bisschen die Hoffnung, dass man damit über unseren Nachbarplaneten ähm in den,Zum Beispiel im Alpha Zentauri-System oder in anderen Systemen, also Trapis eins ist zum Beispiel auch im Planetensystem, das knapp 40 Lichtjahre von uns entfernt ist, ähm dass man dort tatsächlich die Exoplaneten direkt beobachten kann.Das äh nennt sich ähm also diese Initiative, die gerade auch in Europa ähm sich damit beschäftigt, nennt sich Live, also Large Interfermator für Exoplanets und hofft in 20, 25 Jahren tatsächlich fliegen zu können und,so Exoplanet eine direkt zu beobachten.
Tim Pritlove
Ich habe das noch nicht ganz verstanden mit dieser ähm mit dieser Ausblendung des,Also wie kann man diese Überschneidung hinbekommen. Das heißt, man muss ja aus verschiedenen Positionen schauen. Das das heißt, man muss quasi zwei beobachten, mindestens zwei Beobachtungspunkte haben, die sehr weit voneinander entfernt sind.
Lena Noack
Also hier ähm die Idee ist tatsächlich sogar vier relativ weit voneinander entfernte Teleskope im im Weltall zu haben.Ähm andere Variante ist tatsächlich ähm wenn sie äh wenn der Satellit sich sogar noch dreht ähm,kann er praktisch mit unterschiedlichen Winkeln ähm das System Stern äh Planetsystem beobachten und auch dann bekommt man unterschiedliche Lichtsignale, die sich dann wieder entsprechend auslöschen können.
Tim Pritlove
Und wo sollen diese Satelliten dann stehen?
Lena Noack
Die wären dann im Weltall. Die würden praktisch im Orbit um die Erde sein und zusammen den Flugbratschuss soweit koordinieren, dass sie immer den gleichen Abstand zueinander haben und dementsprechend dann die Beobachtung erlauben.
Tim Pritlove
Die äh Amerikaner hatten doch, haben doch aber auch noch eine Mission. Die Testmission, die äh sich auch auf Exoplaneten stürzt. Richtig?
Lena Noack
Genau und ähm Test ist vor einigen Jahren gestartet,war eigentlich nicht der Gedanke, dass Tess die Auflösung hat auch kleinere Gesteinsplaneten finden zu können, hat aber tatsächlich mittlerweile auch schon,super Erden finden können, um andere Sterne drumrum und ähm,tatsächlich war es sogar direkt eine der ersten in den ersten Wochen das Test aktiv war haben sie bereits den ersten äh äh Supererden Exoplaneten gefunden um einen Stern herum,Auch mit Tests äh können wir äh Planeten finden. Ähm,Allerdings, wenn wir tatsächlich ähm uns auf die erd großen Planeten oder erd oder möglicherweise erdähnlichen Planeten fokussieren. Dafür brauchen wir eine neue Mission und da ist tatsächlich die Platomission, die 26 starten wird,der äh große Kandidat dafür viele Planeten ähm von erdroßen Planeten bis Supererden ähm zu finden,und uns da viel mehr Daten zu liefern und vor allem auch Planeten, die so nah am Stern sind,ähm die Temperaturen warm genug sind an der Oberfläche das theoretisch flüssiges Wasser möglich wäre, aber nicht so warm, wie es bei der Venus oder bei Merkur zum Beispiel ist, dass das Wasser gar nicht äh sich an der Oberfläche halten kann und,ähm ist einfach viel zu heiß wird und eine zu starker Treibhauseffekt entsteht.
Tim Pritlove
Soll hatte ich, glaube ich, schon gesagt, 62 äh gestartet werden ist äh Teil dieses Cosmo Vision äh Programms, der äh Esa,und jetzt ist natürlich die Frage, also was genau meint man jetzt eigentlich, wenn man von,erdähnlichen Planeten spricht so. Also.Wie wie ähnlich meinst du das? Also ähnlich es in genauso wie die Erde oder reicht schon, wenn es ein Steinplanet ist und in etwa die gleiche Größe hat, ist es ist es dann schon eher,ähnlich, also was sind so die Parameter für diese Ähnlichkeit, an denen man das festmachen kann?
Lena Noack
Ja, das ist eine sehr gute Frage und tatsächlich, je nachdem, wie man fragt, wird man sicherlich eine andere Antwort.Gerade jemand der sich mehr mit Atmosphären beschäftigt versteht unter dem erdähnlichen Planet auch tatsächlich einen Planeten der ähm entweder genau die gleiche Atmosphäre hat wie die Erde oder zumindest sehr ähnlich basierend auf CO2, vielleicht Stickstoff,jemanden, der sich mehr mit dem Inneren vom Planeten beschäftigt, also jemand wie ich,Da geht's halt eher darum, was sind die, woraus ist der besteht der Planet. Woraus ist er aufgebaut? Was sind die Materialien? Und für mich ist tatsächlich ein er hat ähnlicher Planet auch eher ein Gesteinsplanet.Wenn man jetzt einen Biologen fragt, ist ein erdähnlicher Planet, ein Planet, der Leben auf der Oberfläche ermöglicht oder sogar erdähnliches Leben hat. Da kommt das erdähnlich auch wieder mit rein. Er hat ähnliches Leben,Meistens meint man damit äh Kohlenstoff basiertes Leben und jetzt nicht unbedingt Zweibeiner wie wir es sind,Aber auch da gibt es unterschiedliche Interpretationen. Das Minimale, was man benötigt, um eine zweite Erde zu haben, ist erstmal einen Gesteinsplaneten zu haben.
Tim Pritlove
Mhm. Eisenkern.
Lena Noack
Eisenkern oder Metallkern, Silikatmantel, ähm vielleicht auch stärker vermischt als es auf der Erde ist. Das ist wiederum eine andere Frage. Äh wie genau die Materialien separiert sein müssen,vielleicht mehr Wasser an der Oberfläche, als was auf der Erde haben, vielleicht sogar tiefe Ozeane,aber generell erstmal die allererste, die minimale Voraussetzung ist, dass es kein Gasplanet ist,äh die Temperaturen irgendwo an der Oberfläche oder nah an der Oberfläche zum Beispiel ähm wenn wir einen einen einen Planeten haben, der eine Eiskruste und große Wassermengen Untergrund hat,sind dort immer noch die Temperaturen hoch genug, dass man flüssiges Wasser haben kann. Das ist das, was für mich in ähnlichen Planeten ausmacht.
Tim Pritlove
Magnetfelder, wäre das zwingend.
Lena Noack
Tatsächlich der Mars hat kein aktives Magnetfeld und trotzdem würde ich ja als erdähnlichen Planeten bezeichnen.
Tim Pritlove
Mhm.
Lena Noack
Ich würde sagen, wir haben bisher noch nicht ausschließen können, dass das Leben auf dem Mars gibt. Ähm wir haben viele Missionen äh auf der Suche nach Leben ähm auf der Oberfläche vom Mars auch jetzt gerade.Bisher haben wir noch keine Spuren von Leben gefunden, aber wer weiß, im Untergrund vom Maß könnte sich durchaus das eine oder andere Bakterium befinden.
Tim Pritlove
Okay. Also Magnetfeld wäre jetzt nicht erforderlich, obwohl das natürlich sehr hilfreich ist, um sich gegen Strahlen zu schützen.
Lena Noack
Direkt an der Oberfläche, wenn man auch gerade wie bei Maas keine dichte Atmosphäre hat, wäre eine Magnetfeld prinzipiell.Hilfreich. Ähm allerdings ähm reicht auch eine schützende Schicht, wie zum Beispiel, dass man ein paar Meter im Untergrund in der Höhle lebt,Dann hat man mit der Strahlung auch keine Probleme mehr.
Tim Pritlove
Was weiß man denn jetzt eigentlich und inwiefern.Betankt das auch noch diese äh Exoplanetenforschung, wie sich jetzt Planeten,entwickeln, welche Phasen sie jetzt durchmachen, weil er hat ähnlich, also beim Maß geht man ja davon aus, oder ist man sich mittlerweile halt auch sicher, weil diedie Belege stark sind so, da wird es Wasser gegeben haben, da hat's Kanäle äh gegeben, also Flussdeltas et cetera, das findet man ja alles.Fahren da halt irgendwie Rovas durch und es ist halt ein bisschen trocken so, aber Eis gibt's ja auch. Das sind ja alles so Zyklen, das heißt nicht alles, was,mal mit einer Atmosphäre unterwegs war, muss zwangsläufig zum Zeitpunkt der Beobachtung dann auch noch so aussehen. Also muss man ja dann sozusagen auch ein Gefühl dafür bekommen, so was was könnte denn mal noch erdähnlicher gewesen.Sein. Also wie was weiß man über diese Entwicklung der Planeten und inwiefern ist das jetzt äh für deine Arbeit relevant?
Lena Noack
Ja, also das ist tatsächlich einer der großen Knackpunkte, wo uns auch die ähm Exotlate sehr viel weiterhelfen, unser eigenes Sonnensystem weiterzuverstehen,bei uns äh können wir auf den meisten oder sagen wir so auf der Erde oder auf der Venus zum Beispiel können wir nicht besonders weit in die Vergangenheit schauen,verstehen immer noch nicht besonders gut äh wie sich die Planeten gebildet haben, aus welchem Material sie eigentlich bestehen. Ähm,hatte man am Anfang einen Planeten, der komplett geschmolzen war, also ein Magma-Ozean nennen wir das, einen globalen oder nur an der Oberfläche. Wie was genau ist eigentlich passiert,und ähm aufm Mars haben wir zwar ähm ein sehr, sehr viel, viel ältere Oberfläche, die ist dann so um die die vier Milliarden Jahre, etwas älter,vielleicht sogar, aber die ersten 100 Millionen Jahre, da wissen wir immer noch nicht genau, was passiert eigentlich in dem Planeten? Wie entstehen sie genau? Und was sind vor allem die entscheidenden Faktoren, die entscheiden,Planet sich so entwickelt wie unsere Erde und später ähm nicht nur flüssiges Wasser an Oberfläche hat, sondern auch Leben bildet,oder ähm sich so entwickelt, wie sieht der Maß sich entwickelt hat.Und äh die Beobachtung von Exoplaneten dadurch, dass wir tausende von Exoplaneten mit sehr, sehr unterschiedlichen Altern entdeckt haben und das ist auch wieder was, was jetzt grad diese zukünftigen Missionen noch genauer erforschen werden. Also genau was ist das Alter von Planeten?Und auch durch die diese Interferometrie und Infrarotmessung von dieser Live-Initiative, von der ich vorhin erzählt hatte. Ähm damit könnte man auch jüngere Planeten unter Umständen beobachten,vielleicht erst 50, 100 oder 200 Millionen Jahre alt sind. Und das wird uns viel helfen zu verstehen, wie tatsächlich die Entwicklung von diesem Planeten,geologische Zeitsgeheim funktioniert.
Tim Pritlove
Heißt das, dass man davon ausgeht, dass jetzt alle dass es alle möglichen unterschiedlichen Arten von Entwicklungen gibt oder gibt's schon so ein Standardmodell, wo man sagen kann, so läuft's bei den meisten?
Lena Noack
Ich sage mal so, mit jeder neuen Beobachtung lernen wir was Neues dazu. Also das ist einen Standardweg gibt. Ich glaube, äh von der Idee haben sich alle mittlerweile verabschiedet. Ähm,ob's äh die Bildung ist, äh Sternsystems ist, äh wo die Planeten sich bilden oder wie tatsächlich die Entwicklung von einem Planeten aussieht. Das kann man schon alleine sehen, wenn man sich die unseren Schwesterplaneten Vinus anschaut.Ist genauso ein Gesteinsplanet wie die Erde, besteht wahrscheinlich aus ziemlich den gleichen Materialien, minimale Unterschiede eventuell,es etwas näher an der Sonne dran, aber hat über 700 ähm Calvin-Oberflächentemperaturen eine unglaublich dichte CO2-Atmosphäre,tatsächlich bevor man die Venus ähm durch die Weltraummission besser beobachten konnte, wurde sogar darüber spekuliert, dass die Venus äh bewohnt sein muss von Industrievölkern, die die Atmosphäre völlig mit CO2.
Tim Pritlove
Äh verseucht haben.
Lena Noack
Verseucht haben. Äh mittlerweile wissen wir äh, dass es auf der Oberfläche von der Venus definitiv nicht äh die Möglichkeit gibt, äh für Leben, so wie wir's kennen, also Kunststoff basiertes Leben äh zu existieren.Bei diesen hohen Temperaturen sind die ganzen Kohlenstoffbindungen ähm also alles, was wir brauchen, ob's jetzt DNA ist, ob's Proteine ist, ob's Aminosäuren ist, die sind nicht stabil bei den Temperaturen.
Tim Pritlove
Aber es heißt ja auch nicht, dass diese Temperaturen immer schon so war.
Lena Noack
Das ist tatsächlich bei der Venus äh eine riesengroße Fragestellung. Ähm hat die Venus sich verändert über die letzten viereinhalb Milliarden Jahre oder sah sie immer genauso aus, wie sie jetzt aussah?Ähm dass es eine aktuelle Frage ist, beweist, dass die Esa und die NASA dieses Jahr nicht eine, nicht zwei, sondern drei Venusmissionen ausgewählt haben,in den nächsten ungefähr zehn Jahren oder in der in den ungefähr zehn Jahren starten sollen,und ähm zum einen helfen sollen, die äh die Atmosphäre besser zu vermessen, die Oberflächenaktivität zu verstehen, also ob ähm wie wir aktiv Vulkanismus ist zum Beispiel auf der Venus.Man hofft sich auch Informationen zu finden oder Informationen zu finden darüber, ähm wie die Venus in der Vergangenheit ausgesehen haben könnte. Es,gibt da tatsächlich unterschiedliche Meinungen dazu, ähm die eine Meinung ist ähm eventuell die Venus sogar sehr ähnlich aus wie die Erde heute. Hatte vielleicht sogar flüssiges Wasser an der Oberfläche.Eventuell war aber die Venus immer ein ein höllischer Planet und ähm das herauszufinden wird es auf jeden Fall auch sehr viel helfen.
Tim Pritlove
Mhm. Kommen wir nochmal zurück zu den,Planeten. Wenn man jetzt so in die Ferne äh schaut und sich jetzt so einen Katalog von ungefähr tausend ist das so die Zahl, die wir derzeit haben, tausend Exoplaneten oder es ist schon höher.
Lena Noack
Über viertausend.
Tim Pritlove
Über viertausend. Okay, viertausend haben wir jetzt irgendwie katalogisiert, die sich dann wahrscheinlich auf was weiß ich, drei zweitausend äh Sternsysteme verteilen so.
Lena Noack
Ungefähr, genau.
Tim Pritlove
Das war jetzt nur so eine Gefühlseinschätzung so die werden jetzt irgendwie alle beobachtet. Was weiß man denn jetzt,über diese gesamte Masse von Planeten wie wie viel sind denn jetzt sozusagen erdähnlich? Wie viele sind diese Gasriesen ähm was,was sagt jetzt erstmal sozusagen der Katalog äh was auf was blicken wir derzeit?
Lena Noack
Das ist tatsächlich dann das Traurige daran, also 4000 Exoplaneten klingt natürlich erstmal nach unglaublich vielen Exo,gar keine Frage. Und äh ungefähr war die die Hälfte mittlerweile ist auch ähm tatsächlich in der Kategorie,wo wir sagen können, das ist vielleicht eine ein erdähnlicher Planet, eine Supererde, alsoeine eine etwas größere ähm schwerere Erde, vielleicht auch ähm eher so eine Art Mini-Naptun, also ein Planet, der sehr sehr hohe Wasservorkommnisse hat.Das Problem ist dass wir bei vielen entweder nur die Masse oder nur den Radius wissen.Nur eine Idee von der Masse haben tatsächlich. Die Anzahl der Planeten, wo wir tatsächlich Masse und Radius kennen,Abstand von der Sonne kreisen, wo man sagt, naja, da könnte flüssiges Wasser an der Oberfläche existieren. Das sind dann plötzlich nur noch ein paar Handvoll Planeten.Und ähm das ist genau der Grund, weswegen wir mehr exoplanierten Missionen benötigen, vor allem welche, die wir wirklich gut beobachten können und wo wir dann die Atmosphäre vermessen können und mehr,lernen können, ist Venus der klassische Exotplanet, ist die Erde der klassische Exotlat, Mars oder vielleicht was ganz anderes.
Tim Pritlove
Paar Hand voll heißt jetzt was, so dreißig, vierzig,in der Größenordnung. Okay, ist ja jetzt auch erst mal nix. Und wenn man jetzt äh mal schaut, zu was für Sternen die gehören, sind das einfach sind das auch so Singles-Star-Systeme oder dass du so Doppel äh Stern-Systeme, wie verteilt sich das da?
Lena Noack
Unterschiedlich, ähm die meisten sind natürlich um um Einzelsterne. Es gibt allerdings auch wirklich ähm interessante Beobachtungen von Exoplaneten, die um Doppelsternsysteme zum Beispiel drum rum gefunden wurden,Also entweder, dass man zwei Sterne hat, die sich umkreisen und jeder von den beiden Sternen hat jeweils ein eigenes Planetensystem,oder was ich noch faszinierender finde, zwei Sterne, die sich so eng umkreisen, dass sie tatsächlich einen äußeren Planeten einen dritten Kompanien haben,und ähm das ist ähm eine eine unglaublich faszinierendes ähm Studienobjekt, auch wenn wir die genau beobachten könnten. Weil diese Planeten natürlich ganz unterschiedlichen äußeren Bedingungen ausgesetzt sind,innerhalb eines Umlaufs eines Jahres für diesen Planeten sind unglaubliche Temperaturschwankungen zu beobachten,einfach dadurch, dass sie um zwei Sterne herumkreisen und dementsprechend sehr unterschiedliche Bedingungen ausgesetzt sind.
Tim Pritlove
Auf jeden Fall äh spezielle Sonnenuntergänge, also haben wir schon bei Star Wars gesehen, glaube ich.Gab's das äh ja auch schon. Von daher muss es wahr sein. Okay, das heißt, man man hat jetzt irgendwie dreißig, vierzig ähm sind und sind dieseSterne äh dann auch alle in derselben Größenordnung, so dass die dieselbe Art von Sternen oder ist es auch so durch die ganze Klasse von verschiedenen Sonnentypen durchgemischt und durchgewürfelt.
Lena Noack
Also man hat Planeten, also von diesen 4000 Planeten, um eigentlich fast jeden Sternentyp mittlerweile bereits gefunden,die Maße die meisten befinden sich allerdings um kleinere Sterne, sogenannte ähm Em-Zwergsterne.Und äh der Grund dafür ist ähm diese Sterne sind eh, die am meisten verbreitesten im Universum.
Tim Pritlove
Also ist das für unsere Sonne.
Lena Noack
Sonne ist tatsächlich um einiges größer als ein Zwerg. Diese Endsterne äh oder diese Zwergsterne ähm haben sehr eine sehr sehr lange Lebensdauer.Das heißt, während unsere Sonne zum Beispiel erst viereinhalb Milliarden Jahre alt ist, also im Vergleich zum Universum ähm ist es ein Drittel des Alters vom Universum, also relativ jung noch,die N-Zwerge, die können halt 10, 20 Milliarden Jahre alt werden. Das heißt, wir haben sehr viele auch ältere Sterne in unserer äh auch in unserer Galaxie.Und eine andere Sache ist auch, ähm dass man je kleiner der Stern ist, ähm umso leichter kann man einem Planetensignal.Von dem Stern beobachten, also gerade diese Transitmethode, die wir kurz angesprochen hatten, wo also ein Planet ähm einen Teil des Sterns verdunkelt,Vorstellt, man hat einen Planeten um eine sehr großen, sehr hellen Stern oder man hat einen Planet im Umlauf um einen sehr, sehr kleinen ähm Stern,Dann wird natürlich äh je kleiner der Stern ist, desto mehr von der Oberfläche abgedeckt von dem Planeten,zukommt noch, wenn man sich jetzt für Planeten interessiert, die in dieser habitablen Zone sind, also in diesem Bereich, also eine Habitablationen nennen wir den Bereich, wo flüssiges Wasser an der Oberfläche möglich sein könnte.Dann ist es so, dass diese kleinen Sterne viel, viel Licht äh schwacher sind,dementsprechend dieser Bereich äh der für uns so wahnsinnig interessant ist auf der Suche von der zweiten Erde. Viel näher am Stern dran ist. Das heißt, während man bei einem ähm Stern wie unserer Sonne auch ein Jahr warten müsste, bis man wieder,Planeten vor dem Stern beobachtet hat,dauert das bei so diesen kleinen M Stern und Depoximacent Howig zum Beispiel, unser nächster Nachbarstern ist genauso eine. Dauert es vielleicht ein oder zwei Tage,Das heißt für die Beobachtung und auch für die um um besonders viele Beobachtungsdaten zu finden, was es dann genauere Daten gibt, sind einfach Exoplaneten um diese kleineren Emmsterne sehr viel attraktiver.
Tim Pritlove
Automatisch die Umlaufzeiten schneller sind.
Lena Noack
Für Planeten in der habitablen Zone, aber auch generell sind die Planeten ähm näher dran, weil das gesamte System ist praktisch eine Miniaturvariante von unserem Sonnensystem.Das kann man zum Beispiel sehen äh bei dem einen Planetensystem, das hatten wir vorhin schon angesprochen, das Trapis eins-System, was knapp 40 Lichtjahre von uns entfernt ist. Dort gibt es sieben Exoplaneten,äh unglaublich nahe um den Stern herumkreisen und ähm der erste ähm hat eine Umlaufbahn von ähm,ungefähr ein eineinhalb Tagen und der am weitesten entfernte Planet äh hat immer noch nur eine Umlaufperiode von zwanzig Tagen,Das heißt, wenn man das äh vergleicht mit unserem Sonnensystem, äh liegt das gesamte Planetensystem von Trapis eins innerhalb von der Umlaufbahn von Merkur um unsere Sonne.Nichtsdestotrotz gibt es dort zwei oder drei Planeten, die eventuell flüssiges Wasser an der Oberfläche haben können.
Tim Pritlove
Was los. Gehen wir doch mal auf auf Trappist, Trapist war ja eine eine eine riesige Entdeckung. Insofern, als dass da so viele Planeten sind und,schon grad erwähnt haben, sehr viele auch eben potenziell in dieser habitablen Zone sind. Trotzdem ist das alles nur so einso ein mini äh Mini-Kosmos in gewisser Hinsicht, wo ja alles äh schön nah beieinander ist, wurde glaube ich zwanzig sechzehn erste Mal äh entdeckt und dann im nächsten Jahr wusste man, aha okay, da sind jetzt nochmal sehr viel mehr.Planeten, also es sind dann insgesamt sieben, wenn ich das richtig sehe, oder?
Lena Noack
Genau. Und der erste Planet ist äh Trapis eins B. Das ist meine sehr, sehr komische ähm,Art und Weise wie in der Astronomie die äh Benennung von ähm Stern und dem Planetensystem ist. A ist praktisch der erste Körper, ist der Stern selber und ab B werden die Planeten praktisch äh durchnummeriert, sage ich.
Tim Pritlove
Ein Doppelstellensystem ist.
Lena Noack
Dann sind die Sterne nochmal unterschiedlich mit Großbuchstaben A und B und da werden da unterschieden, aber die Kleinstplaneten, um praktisch einen von den Sternen, wenn dann weiter mit den Buchstaben ähm na, ich sage mal, durchnummeriert.
Tim Pritlove
Ja. Mhm.
Lena Noack
Und bei äh Trabbi's äh eins äh die der nächste Planet, also Trapis eins B ähm der hat wie gesagt nur eine Umlaufbahn von anderthalb Tagen hat,hat ähm entsprechend auch äh bekommt ihr sehr viel Wärme von der Sonne ab, also tatsächlich ungefähr viermal so viel wie die Erde von unserer Sonne ab.Und das bedeutet für den Planeten, das ist wahrscheinlich sehr, sehr heiß ist an der Oberfläche. Das könnte also direkt schon eine Art Venus ähm.Oder Venus Cousin sein.Könnte auch ähnlich wie bei Merkur sein was für mich der große Unterschied zwischen Venus und Merkur ist, ist die Frage, gibt es eine Atmosphäre oder gibt es keine Atmosphäre,Und äh bei den Trapisplaneten ist man jetzt tatsächlich schon auf der Suche und versucht nachzuvollziehen, woraus die Atmosphäre besteht,und äh man man konnte schon ausschließen, dass es sich um eine Wasserstoffatmosphäre zum Beispiel handelt. Man weiß aber nicht, ob es äh ob die Planeten eine Atmosphäre wie die Venus, also ein CO2 dominierte Atmosphäre haben kann. Das ist durchaus möglich.Oder wie beim Merkur. Mehr oder weniger keine Luft zum Atmen an der Oberfläche wäre.
Tim Pritlove
40 Lichtjahre ist das entfernt. Wie kann man da auf eine Atmosphäre schauen?Also was genau, welche Beobachtungsmethode gibt einem Informationen da drüber, wie eine, also ob es eine Atmosphäre gibt und woraus sie bestehen könnte. Da muss man ja den ja schon richtig gut sehen und um da so eine spektrale Auswertung machen zu können.
Lena Noack
Also wenn man versuchen würde, diese Planeten direkt zu beobachten, dann ist es sicherlich äh etwas schwieriger, dann ist es am am Limit von dem, was wir machen können,es gibt eine interessante andere Variante das Licht von dem Stern bei 40 Lichtjahren können wir relativ leicht einfangen,Man kann das Spektrum von einem Stern beobachten, genauso wie wir's in der Schule gemacht haben, weil das was Spektrum von der Sonne uns angeschaut haben,dann in dem Spektrum dieses schwarzen Obsortionslinien haben, die uns anzeigen, ähm was für ein Licht praktisch ähm oder was für Moleküle das Licht ähm filtern auf dem Weg von der Sonne zu uns.Und äh genauso kann man das bei dem ähm bei jedem beliebigen Stern ebenfalls die Spektrallinien messen, das Spektrum messen und ähm sieht erstmal nur, woraus praktisch der Stern selber besteht oder die Atmosphäre von dem Stern.Aber ein Planet, der eine Atmosphäre hat, äh direkt vor dem Stern der Umlaufbahn zieht.Leuchtet ja praktisch das Licht von dem Stern durch die Atmosphäre vom Planeten.
Tim Pritlove
Durch und dann bildet man die Differenz sozusagen.
Lena Noack
Ganz genau.
Tim Pritlove
Messung.
Lena Noack
Man kann sich jetzt natürlich auch vorstellen, dass der Fehlerbalken dort relativ enorm ist,Deswegen ist halt die direkte Beobachtung von dem Exoplaneten, wo man wirklich nur das äh Licht, das thermische äh Emission von einem direkt beobachten Licht äh aufnimmt, natürlich noch attraktiver.
Tim Pritlove
Mhm. Was wäre denn, wenn jetzt so ein ähm sagen wir mal der erste Planet in so einem schnellen System,jetzt gar keine Atmosphäre. Wäre halt einfach nur so ein knalliger Steinkörper, wo irgendwie nichts passiert. So Merkur Style,Würde man denn überhaupt noch bei diesem Transit eine Änderung der Spitralien entdecken oder könnte man dann genau sagen, so ja nee, der einfach mal nüscht.
Lena Noack
Also ich gebe mal ein anderes Beispiel von einem Planeten, der noch näher an seinem Stern kreist. Ähm,nennt der sich. Ähm das ist auch in den äh Exot in den äh Doppelsternsystem.
Tim Pritlove
Geht auch locker von der Zunge, würde ich sagen.
Lena Noack
Ähm ein paar Mal geübt, dann geht das ganz schnell, ganz genau. Und ähm der ist tatsächlich äh über über tausend. Also das heißt, da sind Oberflächentemperaturen, da hat man keine normale Atmosphäre mehr, wie wir es jetzt bei der Erde uns vorstellen.Aber da kann man tatsächlich so eine Art Silikat-Atmosphäre messen, also man man kommt oder auch bei anderen Planeten, die so extrem heiß sind, weil sie so nah an ihrem Sternen dran sind,äh verflüchtigt sich teilweise das Gestein in die Atmosphäre.Äh da kann man tatsächlich ähm viel messen, aber es ist halt keine Atmosphäre, wie wir sie kennen. Es hat nichts mit ähm.
Tim Pritlove
Also ist nur die nur die Vergasung der der der des Steinkörpers, aber der lässt sich dann als solcher auch sehen. Das,sieht schon eine Änderung im Spektrum, aber man weiß, aha, okay, aber das ist jetzt nicht jetzt so das Gas, wie wir uns das jetzt vorstellen und es ist mehr eine Ausgasung und nicht zu sehr eine Atmosphäre. So, aber wenn jetzt ähm,Die anderen Trappisten äh ankommen und die haben jetzt offensichtlich eine Atmosphäre, dann oder weiß man noch nicht.
Lena Noack
Das weiß man noch nicht.
Tim Pritlove
Weiß man noch nicht, aber das will man sozusagen machen.
Lena Noack
Man könnte es eventuell äh ab dem nächsten Jahr herausfinden äh mit einem neuen Weltraumteleskop, was Ende diesen Jahres starten wird.
Tim Pritlove
Heißt das, dass das jetzt bisher noch mit gar keinem Teleskop möglich war und das so noch nie getan wurde oder gab's schon mal einen Teleskop, wo diese Methode auch äh probiert wurde.
Lena Noack
Also das Problem ist, es hängt halt ab äh von der Art der Atmosphäre, wie leicht sie beobachbar ist,Das heißt, man konnte mit äh Beobachtungsmethoden, die man jetzt schon zur Verfügung hatte, gewisse Atmosphären ausschließen. Also wie jetzt zum Beispiel eine wasserstoffreiche Atmosphäre.Was wir sagen Atmosphäre wäre, das konnte man bereits ausschließen. Ein anderes Problem ist wenn die gesamte Atmosphäre wolkenverhangen ist, auch dann,ist es sehr sehr schwierig überhaupt ähm ein Spektrum zu bekommen, aus dem man ähm in einer Atmosphäre herauslesen kann. Das heißt, es hängt auch sehr von der Atmosphäre, von den Planeten ab,was man tatsächlich messen kann und wie gut man die Atmosphäre bestimmen kann,Es gibt ähm Atmosphären von Exoplaneten, die jetzt nicht mehr diese er hat ähnlichen Planeten, Gescheinsplaneten sind,indem man tatsächlich auch zum Beispiel Wasser schon entdeckt hat und ähm unterschiedliche Komponenten, Kohlenstoff, äh Gase entdeckt hat. Das heißt, äh je nachdem wie gesagt, das hängt immer von dem Planetensystem direkt ab,leicht die Atmosphäre beobachtbar ist. Und ähm da hilft es natürlich, wenn wir vorher verstehen,oder versuchen zu verstehen, ähm bei welchen Exponeten würden wir eher erwarten, dass wir eine Atmosphäre haben, die wir auch messen können oder dass es überhaupt eine Atmosphäre gibt und äh nicht ein Merkur ähnlichen Planeten?Und äh dafür braucht man tatsächlich äh nomerische Modelle, die versuchen basierend auf dem Wissen, was wir in unserem Sonnensystem haben.Wollen wir wissen, wie Atmosphären funktionieren, wie auch das Innere von dem Planet mit der Atmosphäre gekoppelt ist, zum Beispiel durch vulkanische Ausgasung,dass wir dadurch verstehen wie über lange Zeit sich ein Planet entwickelt und wo es am wahrscheinlichsten wir eine Atmosphäre zu haben, die wir dann auch tatsächlich messen können.
Tim Pritlove
Also wie ich das richtig verstehe man kann jetzt äh mit dem derzeitigen Instrumentarium bestenfalls bei manchen Exoplaneten,bestimmte Dinge ausschließen, wie äh wie die Atmosphäre ist, aber man ist noch nicht in der Lage mit dem derzeitigen Besteckkonkret zu sagen, hier haben wir einen Exoplaneten und wir haben uns den so gut anschauen können, dass wir genau wissen, woraus die Atmosphäre besteht. Da sind wir noch nicht.
Lena Noack
Also bei erdroßen Planeten, nein.
Tim Pritlove
Okay, bei Erdgroß, aber bei den bei den Gasries.
Lena Noack
Wenn man je größer der Planet ist, genau da wurden auch mehrere Gase schon äh besser äh bestimmt.
Tim Pritlove
Heißt okay, also die Methode existiert, ist da, aber sie ist noch nicht anwendbar auf.
Lena Noack
Genauigkeit ist noch.
Tim Pritlove
Die erdähnlichen Planeten, auf die wir bei uns ja jetzt hier grade beschäftigen. Aber um dem näher zu kommen, gibt's diesen anderen Ansatz und das ist ja im Wesentlichen so dein mathematische Ansatz,hier äh quasi die ganze Entwicklung des Planeten in so ein großes Modell reinzustecken und zu sagen, was wir nicht beobachten können, das können wir einfach ausrechnen.
Lena Noack
Oder andersrum ähm praktisch die Kandidaten herauszuwählen, wo man am ehesten was beobachten kann.
Tim Pritlove
Und wenn es so das jetzt auch konkret auf Trappist eins schon an.
Lena Noack
Genau, also Trapis eins ist natürlich in den äh System, was äh viele Modellierer derzeit unglaublich begeistert. Dadurch, dass es halt so viele unterschiedliche Planeten gibt, äh die teilweise extrem heiß an der Oberfläche sind, teilweise extrem kalt an der Oberfläche.
Tim Pritlove
Aber die alle ja Steinplaneten sind und die alle auch erdross sind.
Lena Noack
Genau, die sind alle erdroß ungefähr, aber die äußersten Planeten haben eine Dichte, die ein bisschen niedriger ist als bei der Erde. Und das heißt, dort würde man davon ausgehen, dass man sehr große Wasser oder vielleicht sogar Eismassen hat.Das ist ganz spannend, weil das haben wir in unserem Sonnensystem. Wir haben zwar die Eismonde, aber wir haben jetzt nicht ähm Eisplaneten in dem Sinne.Und das Spannende ist halt bei dem Trapissystem, ähm dass das Material trotzdem relativ ähnlich ist, also die Zusammensetzung von dem Planeten relativ ähnlich ist.Außer natürlich dann tatsächlich der Wasseranteil oder der der Anteil von leichtem Material, der sehr stark schwankt in dem Planetensystem.Und das heißt hier können wir äh relativ gut versuchen nachzuvollziehen, woran liegt das? Oder auch bei den Planeten, die relativ nah am Stern dran sind. Wie wären die tatsächlich aufgeheizt?Also nicht nur von der Oberfläche her, von der Sonnenstrahlung her, sondern auch, was passiert im Inneren, ähm wie viel Wärme wird im Inneren produziert,ähm vor allem zum Beispiel durch Gezeiten, Kräfte, wie man's ja vom Mond kennt, dass der Mond die ähm Blut und Ebbe auf der Erde beeinflusst,Genauso beeinflusst die Erde auch tatsächlich die Wärmeproduktion im Mond durch die gleichen Kräfte,das sieht man auch in unserem Sonnensystem ganz schön bei dem Jupiter Mond äh,tatsächlich von äh also anderen Planeten im Jupitersystem und dem Jupiter selber so hin und her gedrückt und gequetscht wird, ähm dass der im Inneren teilweise sogar geschmolzen ist, soweit wir wissen.
Tim Pritlove
Ist nicht nur äh Ayo, sondern es betrifft ja im Prinzip alle Galiläschen, Mode, hatten wir bloß hier in der letzten äh Sendung ein Gespräch über die Juice-Mission, die ja im Prinzip genau das auch aus äh messen soll, wie sehr die äh Monde zusammengequetscht werden.Nochmal bei Trapist eins und äh auch diese numerische äh aus ähm Wertung. Also man will ja jetzt irgendwie herausfinden, okay,Was geht da? Man hat jetzt sehr sehr beschränkte Daten, aber die kann man natürlich in so ein Modell reintun. Was genau also was,das mal beschreiben, wie manan so ein Modell rangeht, was was steckt man da rein, was sind da so quasi die die die Variablen und was was kann man dann tatsächlich darausgewinnen, also welche Informationen fallen da raus, was muss man reinstecken, was fällt raus und welchen Erkenntnisgewinn kann man damit äh sich anbahnen lassen.
Lena Noack
Also was äh noch ganz wichtig ist bei vielen äh Planetensystemen haben wir sehr gute Informationen über den Stern, über das Spektrum von dem.Und äh das gibt uns eine wichtige Information. Denn wir wissen, dass die Sterne mit ihrem Planeten zusammen aus einer Wolke entstehen,bedeutet das Material, dass wir einen Planeten finden, ähm hängt direkt mit der Zusammensetzung von dem Stern zusammen.
Tim Pritlove
Aber das ist ja alles eine große Staubwolke. Daraus bildet sich äh der oder die Sonne. Und aus dem Rest werden die Planeten gemacht in dieser Aggressionsscheibe, findet sich das immer. Das Modell sieht man überall im Weltall.
Lena Noack
Ganz genau, ganz genau und äh die Sterne bestehen natürlich hauptsächlich auf so was wie Wasserstoff und Hejung, haben aber einen ganz kleinen Bruchteil von diesen schwereren Elementen,Diese schweren Elemente und äh auch größtenteils in der Zusammensetzung, wie wir sie im Stern tatsächlich haben. Davon gehen wir davon aus, dass wir die auch in dem gleichen Verhältnis zumindest in Gesteinsplaneten haben, die sich nahe an der Umgebung vom Stern bilden.Sehen wir bei dem im Sonnensystem ähm passt das relativ gut ähm dass die Zusammensetzung von der Erde sich relativ gut,vergleichen lässt mit dem Spektrum von dem Stern, wenn man ähm betrachtet, wie tatsächlich diese Planeten entstehen durch Kondensation von von Staubpart.
Tim Pritlove
Also alles, was in der Erde ist, findet sich im Prinzip auch in der Sonne.
Lena Noack
Genau und fast im gleichen Zusammenhang, aber wir verstehen auch, warum der äh das kein Eins-zu-Eins-Verhältnis ist.Wenn man das jetzt auf andere Systeme übertragen, können wir damit, wenn wir das Sternspektrum relativ gut beobachten können und wissen, woraus der Stern entsteht, gibt uns das Informationen, was sind tatsächlich die Bausteine von dem Planeten.
Tim Pritlove
Und Trappes eins A, also die Sonne können wir gut beobachten.
Lena Noack
Trappist äh eins haben wir Informationen dazu.
Tim Pritlove
Meine ist ja relativ nah dran. Vierzig Liedjahre ist ja quasi nix, ist ja quasi vor Ort und das müsste ja nun wirklich schon sehr gut vorliegen. Das heißt, das ist schon mal erstmal die Kerninformation, die in dieses Modell einfließt.
Lena Noack
Ganz genau und das äh gibt uns halt eine Information, äh woraus diese Planeten bestehen müssten. Das Spannende ist dann daran, dass die Materialien selber ähm sind zwar nicht im gleichen Verhältnis vorhanden, wie wir's jetzt bei uns in der Erde zum Beispiel haben.Aber die Mineralologie, die sich daraus bildet, also praktisch die einzelnen Minerale, die sich praktisch bei denen entsprechenden Temperaturen, bei den entsprechenden Abständen von Trapis eins äh bilden. Die entsprechend auch Mineralien, die wir auf der Erde haben.Das bedeutet, da haben wir relativ gute Kenntnisse, wie diese Minerale sich auf die unterschiedlichen Temperaturen, unterschiedlichen Drücken verhalten,Und ähm damit können wir praktisch herleiten.
Tim Pritlove
Moin, sind die Minerale ist das Wissen um diese Minerale ein Ergebnis der Simulation oder ein Ergebnis der Beobachtung?
Lena Noack
Von experimentellen Daten tatsächlich. Also wir wissen auf der Erde die die Hauptkomponenten woraus die Erde besteht,können im Labor dann die Eigenschaften von den unterschiedlichen Mineralen, von dem Gestein, von der Erde nachvollziehen.Durchmessungen von Laborexperimenten.Ähm diese Information hilft uns dann sehr zu verstehen, ähm wie grundlegende Eigenschaften in diesen Exoplaneten aussehen sollten und ähm eine von den wichtigsten ist zum Beispiel die Wärmeleitfähigkeit.Planeten, wenn die sich bilden, sind unglaublich heiß und sie kühlen über Milliarden von Jahren aus.Je nachdem, wie gut sie auskühlen können ähm für das äh zu entweder zu einem maßähnlichen Körper, der an der Oberfläche relativ äh langweilig aussieht. Und ich hoffe, dass mir meine Kollegen vom DLR das jetzt gerade nicht übel nehmen.
Tim Pritlove
Alles relativ.
Lena Noack
Ähm gegenüber einem Planeten wie äh Erde, die dann halt Plattentektonik hat, Vulkanismus hat. Und das hängt alles damit zusammen, wie stark oder wie gut der Planet küren kann, wie sehr die Wärme tatsächlich,äh einfach durch Leitfähigkeit ähm durch den Mantel transportiert werden kann vom Innersten bis zur Oberfläche.Oder wenn's halt nicht effektiv passiert, dann passiert es dazu, dass Gestein äh wieder aufschmilzt,die Temperaturen, bei denen das passiert, auch das können wir wieder berechnen, basierend aus der Zusammensetzung, die wir halt denken, die diesen Planeten haben.Und ähm das hilft uns zu verstehen, ob es äh bei diesem Planeten, ob sie im Inneren geschmolzen sein müssten oder nicht.
Tim Pritlove
Also verstehe ich das richtig? Wir gehen jetzt im Prinzip erst mal ausschließlich starten wir mit dem Spektrum,Also der Zusammensetzung der Sonne, wir wissen die Masse und so weiter und äh dauert ergeben sich halt äh viele Sachen und das,dann geht man im Prinzip zurück in der Zeit und sagt, okay, alles klar, wenn da jetzt diese Bestandteile drin sind, dann bedeutet das die da muss eine Stoppwolke gegeben haben, die hat jetzt irgendwie,die und die,Masse äh gehabt, daraus sind was weiß ich, vielleicht 99 Prozent in der Sonne davon äh gelandet und dann hat sich aus dieser Aggretionsscheibe haben sich die Planeten gebildet. Das heißt, zu diesem Zeitpunkt, also schon aus diesem nah, also das Modell versucht quasi,Geschichte nachzuvollziehen, der kompletten Entstehung dieses Sonnensystems, ja und der äh Ausbildung dieser Planeten.Wobei dann wahrscheinlich die real beobachtete Zahl von Planeten auch ein weiterer Parameter ist. Also man weiß einfach, die sind dabei rausgekommen oder,Lässt man das eigentlich weg und tuned sein Modell so, dass dann diese Zahl von Planeten auch bei rauskommt und dann weiß man, dadurch ist es richtig.Ist das mehr so ein Korrekturfaktor oder das ist mehr so ein so ein Eingabewert.
Lena Noack
Also es gibt auch äh Modelierer, die sich tatsächlich mit dieser Frage beschäftigen, wie viele Planeten genau bilden sich, in welchem Orbit, in welchem Abstand äh von dem Stern,und äh die auch versuchen nachzuvollziehen, warum unser Sonnensystem exakt so aussieht, wie er aussieht mit dem Astroidengürtel zwischen Maß und Jupiter und diese Spaltung im inneren äußeren Sonnensystem,Für mich ist es eher spannend zu schauen, welche Temperaturen haben in einem bestimmten Abstand von einem Stern geherrscht, wo wir jetzt den Planeten finden,eventuell der Planet sich auch etwas bewegt, aber gerade bei diesem Trapis eins-System geht man davon aus, dass die Planeten sich nicht zu weit weg vom Stern gebildet haben, relativ wenig dort, wo sie jetzt auch grade sind.Und äh wir können dann nachvollziehen, wie sich praktisch die Temperaturen in dieser Aggressionsscheibe verändert haben.Heißt für jemanden, der sich jetzt die Zusammensetzung von diesen Exoplaneten äh versucht äh aus dem Sternspektrum herauszuleiten, geht's nicht mehr darum,ob sich Planeten bilden oder wie sich Planeten bilden könnten, also die die Dynamik in dieser Aggressionsscheibe von der Planetenbildung ist weniger wichtig, sondern eher der Temperaturverlauf,welches Material an der Stelle, wo der Planet sich befindet oder gefunden haben kann in der Vergangenheit, nacheinander auskondensiert, aus dieser Aggressionsscheibe.
Tim Pritlove
Also um man versucht das da zu vollziehen, um dann herauszufinden oder eine Annahme darüber zu machen, woraus könnte jetzt der Planet an dieser Position bestehen.In Folge der Temperaturverteilung, die letzten Endes dann eben auch eine Aussage darüber treffen lässt, was quasi jetzt aus dem zur Verfügung stehenden Material gebacken wird.Salopp,gesagt. So, das heißt, man äh versucht quasi so ein bisschen das Rezept zu bestimmen, mit dem jeder äh einzelne dieser Planeten so zusammengesetzt ist, auch wenn sie im Prinzip alle ähaus denselben Grundstoffen hervorgehen, dürften die inneren ja nochmal etwas schwerere Komponenten haben und die äußeren, die etwas leichteren.Aber vor allem sind sie alle mit unterschiedlichen Temperaturen konfrontiert, woraus sich dann eben andere Mineralverbindungen bilden und deswegen so und das heißt dann spielen wir das Spiel so weiter, die Simulation äh versucht dann die ganze Entstehungsgeschichtejedes einzelnen Planeten nachzuvollziehen.
Lena Noack
Ganz genau und da ist es auch ganz wichtig, dass ähm die die Oberflächentemperatur spielt da natürlich auch wieder eine Rolle.Die es beeinflusst davon, ob man zum Beispiel eine dichte Atmosphäre hat, wieder bei der Venus oder eine kalte Temperatur hat wie beim Mars,Also das das ist ein ganz wichtiger Faktor und das heißt, die die Idealvorstellung von allen, die sich äh mit diesem Themenkomplex beschäftigen, ist ähm dass eine super Modell zu haben, wo tatsächlich auch die Atmosphärenentwicklung,sehr gut mit der mit der Sternstrahlung gekoppelt wird, dass man genau versteht, wie sich die Atmosphäre über lange Zeitsgeile halten kann,Gerade bei diesen Emmstern ähm geht man davon aus, äh dass die Aktivität von dem von den Sternen sehr stark ist und dass äh sie super Winderuptionen haben, die praktisch denAtmosphären in bei Planeten, die relativ nah am Sternen sind, kaum eine Überlebungschancen geben.Das ist auch so ein bisschen der kritische Punkt, ähm dass man sich so stark auf diese Exoplaneten, um diese elf Sterne konzentriert,man weiß tatsächlich gar nicht, ähm wie oder wie stark Atmosphären bei diesem Planeten tatsächlich überleben können.Das ist halt natürlich eine ganz wichtige Randbedingung wiederum für Modellierung, die sich im Inneren damit beschäftigen, wie äh der Wärmetransport ist, wie die chemische Entwicklung auch im Inneren stattfindet, ob's auch Vökanismus gibt oder Ähnliches.Ist direkt damit gekoppelt, was hat sich an der Oberfläche passiert.
Tim Pritlove
Und da weiß ich,eine ganze Menge schiefgehen. Insbesondere bei solchen Modellen und Simulationen, meine äh das ist ja so ein bisschen so, als ob man jetzt äh quasi so Billardstöße nicht nur die nächsten fünf, sondern irgendwie so die nächsten fünfMilliarden Billiardstöße äh ausrechnen möchte und wenn man halt irgendwie schon beim Ersten da so eine geringe Abweichung von 0, 0001 Grad gehabt hat, dann,passt am Ende halt überhaupt nix mehr. Wie geht man mit sowas um? Ich meine, stelle mir das jetzt grade so vor,erstmal Wasser alles mit reinfließen muss, abgesehen von korrekten Parametern und Informationen den richtigen Algorithmen. Natürlich ist ja auch, dass man eigentlich in solche Simulationen,vollständige physikalische Wissen, auch das geologische Verhalten der Materie, Temperatur, wir haben ja schon drüber gesprochen, all diese ganzen Parametervergasungen, Termodynamik, Pipapo ist ja alles drin.Woher weiß man denn, dass die so ein Modell,überhaupt brauchbare Informationen liefert oder wie kalibriert man so ein Modell, dass man zumindest so ein Gefühl dafür hat, dass es halbwegs stimmen könnte.
Lena Noack
Ich würde sagen, es gibt äh drei Probleme bei solchen Modellen. Ähm das erste Problem ist, dass ähm wir immer mit irgendwas beginnen müssen.Egal ob ihr uns den Planeten genau anschauen wie er heute ist oder wir versuchen zu verstehen wirklich von der Planetenbildung bis heute wie sich im Planeten entwickelt hat. Äh Anfangstemperaturen äh die Zusammensetzung. Es gibt einfach Informationen, die wir nicht genau kennen.Das ist das erste Problem. Das zweite Problem ist, dass wir auch die Computersimulation durchführen müssen. Das bedeutet, wenn wir alles zu 100 Prozent genau machen und eine Auflösung nehmen, die genau unser Traumauflösung,Sein Computermodell entspricht, müssen wir auch tausend Jahre warten, bis die Ergebnisse da sind. Das heißt, wir müssen vereinfachen an bestimmten Stellen. Das ist das zweite Problem.Und das dritte Problem ist natürlich, dass wir basierend auf dem Wissen arbeiten, dass wir bisher haben, von der Physik, von von der von der Geologie, von unterschiedlichen Prozessen,wir haben und auch die entwickelt sich natürlich Stück für Stück weiter. Je mehr wir entdecken, desto mehr ähm lernen wir auch mit dazu,Und was machen wir also, um um das zu umgehen? Das das Dritte, also die Kalibrierung, äh äh die du grad schon genannt hattest, ähm das ist natürlich ein ähm dafür aus unser Sonnensystem perfekt geeignet.Also gerade mit den Modellen, die wir haben, können wir sehr gut oder relativ gut nachvollziehen, warum Maas genauso aussieht, wie er heute aussieht. Warum die Venus so aussieht, wie sie aussieht.
Tim Pritlove
Was heißt relativ gut?
Lena Noack
Relativ gut heißt, äh es kommt immer auf die Detail,Genauigkeit natürlich an, aber es ist relativ einfach zu verstehen, warum der Mars keine Plattentektonik hat. Warum der Mars,keinen aktiven Vokanismus hat, obwohl es vielleicht mal ab und zu mal einen kleinen Vulkanausbruch geben kann, aber das können wir sehr gut nachvollziehen. Warum der Mars auch keine dichte Atmosphäre mehr hat.Venus genau das Gleiche. Wir verstehen äh relativ gut, warum wir diesen Treibhauseffekt haben auf der Venus.Gesagt, wir wissen nicht, wie's früher auf der Venus ausgesehen hat, weil da tatsächlich unterschiedliche Modelle jeweils zu gleichen Venus heute,führen. Und deswegen ist es relativ schwer, dass ähm die in die Vergangenheit zu schauen bei der Venus zumindest. Aber da werden uns die Missionen hoffentlich weiterhelfen.
Tim Pritlove
Ja. Das heißt, man kann so ein Modell an unserem Sonnensystem quasi kalibrieren und immer wieder überprüfen, so nach dem Mottowenn wenn mit dem Modell, wie wir's jetzt gerade programmiert haben und den Daten, die wir da reingepackt haben, aus ähZusammensetzung unseres Sonnensystems nicht am Ende irgendwie ein korrekter Maß eine korrekte Venus und eine korrekte Erde bei rauskommen so dann äh hat man die physikalische Realität äh verpasst.
Lena Noack
Genau und auch für diesen Zusammenhang zwischen der Sternenzusammensetzung und dem Planetenzusammensetzung,auch mittlerweile mehrere Arbeiten, die halt auch die Exoplanetendaten, wo wir die Dichte relativ gut bestimmen konnten von dem Planeten, auch auf die Zusammensetzung von den Planeten zurückgeführt haben, dass auch da dieser Zusammenhang zwischen Stern und Planetrelativ gut bestimmt wurde,das andere Problem betrifft, ähm dass wir vereinfachen müssen, da gibt's wiederum Untersuchungen, die halt genau schauen, welche Vereinfachung dürfen wir machen und welche Vereinfachung nicht.Das heißt, wenn wir uns also grade was aus einer Auflösung von einem Modell betrifft, können wir relativ gut für einzelne Simulationen schauen.Wo dürfen wir einen Schritt zurückgehen und das ein bisschen gröber betrachten und wo nicht.Die erste Sache, also woher wissen wir eigentlich die genauen Randbedingungen, die Anfangsbedingungen von solchen Simulationen,Da ist es tatsächlich der Ansatz bei vielen so und so mache ich das auch, dass wir dort zufällige Werte nutzen. Das heißt, all diese Daten, die wir nicht kennen,in einem bestimmten Bereich, der teilweise auch durch Beobachtung gegeben ist oder durch Experimente begeben ist. Die werden zufällig gewählt und dann,schauen wir uns nicht die Entwicklung von Trapis 1 B in einer Simulation an, sondern in tausend. Das bedeutet natürlich auch, dass wir sehr viel Rechenkapazität benötigen,Wenn wir dann allerdings merken, entweder völlig unabhängig davon, was die Anfangsbedingungen sind, bekommen wir immer das gleiche Ergebnis raus.Dann wüssten wir oder haben wir ein sehr gutes statistisches Verständnis dafür, wie sich der Planet entwickeln sollte.Oder wir merken genau dieser Parameter, ist der Keeperameter, der beeinflusst, ob,zu einem Planet wie die Erde entwickelt oder Maß entwickelt oder Venus entwickelt, dann hilft es uns zu verstehen, welche Parameter wir in der Zukunft besser verstehen müssen.
Tim Pritlove
Also was bei zukünftigen Missionen stärker beobachtet werden soll.
Lena Noack
Entweder Beobachtung oder auch tatsächlich Labordaten auf der Erde, die wir generieren können,Also grade ähm was tief in der Erde passiert und auch tief in dem äh Exoplaneten passiert, ähm sind teilweise Vorgänge, die wir in Hochdruckexperimenten,bestimmen könnten.Und das hilft dann tatsächlich äh zu verstehen, was sind die wichtigen Parameter und welche haben im Endeffekt für die Langzeitentwicklung von dem Planeten gar keinen großen Einflus.
Tim Pritlove
Ist das jetzt so ein äh so dieses Software? Ist das ist das jetzt so ein Modell, was das nur so bei euch in der FU gibt und das ist so euer privates Ding oder entwickelt man so was äh dann auch schon open source global und lässt äh viele andere dann teilhaben, weil ich meine, man programmiert ja jetzt nicht jeden Tag ähmal eben so eine Sonnensystemsimulation äh komplett neu und da macht's auch eigentlich sehr viel mehr Sinn,Mit der gesamten Community zu arbeiten, gibt's da jetzt so ein etabliertes System, was,alle sich teilen oder gibt's so verschiedene, die miteinander konkurrieren und äh alle versuchen, irgendwie das Beste rauszubekommen oder macht da muckelt da jeder an seinem eigenen Ding.
Lena Noack
Es gibt vor allem viel zusammenarbeiten. Also es gibt glaube ich nicht jemanden, der den gesamten Code von Anfang, von der Sternentstehung bis zu späteren Planetenentwicklung modellieren kann, aber man arbeitet dann mit den äh Fachexperten zusammen, die halt unterschiedliche Abschnitte,bei der Entstehung von Planeten und der Langzeitentwicklung vom Planeten dann miteinander äh dass man das miteinander kombinieren,Es gibt natürlich mehrere Modelle, ähm die entwickelt wurden, um zum Beispiel diese in Planeteninneren zu verstehen.Ähm das finde ich allerdings auch wichtig, denn wenn's nur ein einziges Modell gibt und da ein Fehler existiert,Leidet die gesamte Community darunter. Ähm was wir tatsächlich haben, wir entwickeln ähnliche Modelle mit einem unterschiedlichen Fokus,je nachdem was die wissenschaftliche Hauptfragestellung ist, die unterschiedliche Arbeitsgruppen dann beschäftigt. Es gibt auch tatsächlich Open Source Codes, die dann auch weiterentwickelt werden von der Community. Das Wichtige ist aber, dass wir regelmäßig die Codes miteinander vergleichen.Dass wir dadurch sichergehen, dass alle genau das machen, was sie machen sollen. Also nicht nur an Planeten, Entwicklungsmodellen vergleichen,tatsächlich den Mars und die Venus zum Beispiel nachvollziehen können, sondern auch zu schauen, ob die Codes tatsächlich genau das gleiche ergeben, wenn wir genau die gleichen Input und Randbedingungen geben.Äh das ist äh was ganz Wichtiges und das erfordert eine Zusammenarbeit von der Community, die aber zum Glück äh überall gegeben ist.
Tim Pritlove
Mhm. Was heißt, das ist so eine richtig große Modelliererszene, die im Prinzip genauso arbeitet. Man ist ja,Prinzip die Anforderungen von moderner Software äh Entwicklung heutzutage auch, dass man so testbasiert arbeitet, dass man irgendwie äh immer wieder versucht so Fehler auch ähzu finden, indem man eben Ergebnisse vergleichtin dem Moment, wo man sich eben jetzt auch nicht unbedingt auf ein System verlassen will, würde es ja zumindest auch schon mal helfen.So modularen Ansatz zu machen, so nach dem Motto man kann so verschiedeneMantelkonvention. Da reinpluggen und im Hintergrund läuft halt quasi das Modell immer wieder durch und heute nehmen wir mal das. Heute nehmen wir mal das und gucken wir mal, was die so einzeln herausbringen, so einfach, um da so ein, so einen permanenten Softwarefortschritt auch zu haben und sie auch sicher äh sein zu können, dass man einerseits auf verschiedenste Module jederzeit zugreifen kann, umquasi mit einem anderen Ansatz äh mal wieder so ein Modell auszuprobieren und andererseits eben nicht in diese Falle zu treten, dass man sagt so ah ja hier guck mal, das läuft ja super und so und dann weiß ich auch später stellt man dann fest soJa, war im Bug drin irgendwie. Alle unsere Annahmen sind falsch.
Lena Noack
Also das wird tatsächlich gemacht ähm in dem Moment, wo es um die Optimierung des Guts geht. Also grad die Frage, wie schnell ein Code tatsächlich ist, hängt sehr stark damit zusammen, äh wie gut ähm die die numerische Programmierung dahinter ist, wie gut äh,Gleichungssysteme tatsächlich von der Software gelöst werden, ob's jetzt Clus Plus oder Vortrag ist oder MetLab oder was auch immer. Und ähm da ist es tatsächlich so, dass man Module nutzen kann, die andere entwickelt haben, genau optimiert,für solche äh geophysikalischen Anwendungsprobleme. Und ähm dass man da nicht das Rad äh neu erfinden muss und das hilft auf jeden Fall sehr.
Tim Pritlove
Okay, kommen wir noch mal äh weg von der Mathematik, auch wenn das äh spannend ist. Äh vielleicht nochmal kurz Trapp ist eins. So, jetzt ist das ja ähm sozusagen der interessanteste Ort, ist gar nicht so weit weg,jetzt nicht so ohne Weiteres hin, verzichtlich Tage, bis man dauert lange. Ähm aber,Da sind jetzt viele Planeten. Man versucht ein bisschen herauszufinden, was ist mit denen? Was kann man denn sicher sagen über dieses System, was da so wohlabgeht, was da so die Realität ist und was sind noch die großen Fragezeichen, vor allem, was kann man daraus lernen? Also wie Lebens,affin könnte das sein, zum Beispiel.
Lena Noack
Also was wir von dem System wissen ist, dass die Planeten wirklich mit dem Stern zusammen entwickelt haben müssen, also sind keine eingefangenen Planeten,was man zum Beispiel beim beim Pluto auch schon mal suggeriert hat, dass das gar nicht, dass er sich gar nicht wirklich eine Aggressionsscheibe gebildet hatÄhm das kann man beim Trapis eins-System relativ gut nachvollziehen. Äh wir wissen auch ähm wie stark diese Gezeitenkräfte, die wir vorhin bei den äh Jupitermonden schon mal kurzbesprochen hätten, äh wie stark diese Gezeitenkräfte dort in dem System ist. Das heißt, wir verstehen relativ gut, wie stark die innersten Planeten aufgeheizt werden.Ähm wir wissen.
Tim Pritlove
Also nur durch die Gravitation aufgeheizt werden, unabhängig von der Sonnenstrahlung.
Lena Noack
Ganz genau, ganz genau. Ähm wir wissen allerdings auch relativ gut, ähm äh dass es äh der der Stern selber einen Magnetfeld hat, der auch,praktisch in die Oberfläche von den nächsten Exoplaneten eintaucht,und auch dort tatsächlich durch elektrische Leitungen an der Oberfläche auch zu weiterem starken Aufheizten führt,das kann man relativ gut in in Modellen nachvollziehen, ähm das basiert aber auch wieder auf Laborexperimenten, dass man diese Prozesse relativ gut nachvollziehen kann und dadurch können wir,recht gut die die innersten Planeten in diesem System, gerade wenn's um die Lebensfreudigkeit vom Planeten geht, ausschließen.Bei den Planeten, die weiter außen sind, die äußersten Planeten, äh die äußersten zwei, drei Planeten, ähm da wissen wir tatsächlich, dass äh dort große Wasservorkommenüser sein müssen,ob sie gefroren sind oder flüssig sind. Das ist leider eine ganz andere Frage. Und ähm da brauchen wir mehr Beobachtungsdaten, um da was sagen zu können, zum Beispiel, ob die vielleicht eine Atmosphäre haben oder kalte Eiskrustenoberflächen haben.Spannende ist wirklich, diese Planeten in der Mitte, diese zwei, drei in der Mitte von dem System, wo die Temperaturen genau richtig sein müssten, dass flüssiges Wasser möglich wäre.Und ähm da können wir von unserer Modellierung her nur sagen, dass es wirklich heiße Kandidaten sind.Wir brauchen aber die Beobachtung. Wir brauchen die Beobachtungsdaten von den Atmosphären und äh da wird halt ähm nächstes Jahr hoffentlich das äh James Web äh Weltraumteleskop, was jetzt diesen Dezember,äh gestartet,gelauncht wird da werden wir hoffentlich dann Daten finden und das das macht dieses System so unglaublich interessant weil wir die die Randbedingungen des Systems sehr gut verstehen.Also wir können Planeten ausschließen, aber es gibt zwei, drei Planeten in der Mitte von dem System, die einfach unglaublich interessant sind.
Tim Pritlove
Hier vor drei Sendungen mit Günther Hasinger drüber gesprochen überäh Teleskop und was so die Ziele sind und eins der großen vier äh Bereiche, in denen halt James Web Fortschritte machen soll, ist eben konkret die äh Beobachtung von Exoplaneten, äh James Webtelskope sind Infrarot Teleskop und kann halt,sehr fein auflösen, sehr viel feiner als das äh andere Teleskope bisher konnten. Wenn man jetzt sagt, okay 40 Lichtjahre entfernt, Trapp ist eins,Mit dem James Webtelskop auf dieses System, was könnte dabei rauskommen an Informationen, die man jetzt noch nicht hat.
Lena Noack
Das ist auch immer noch ähm eine Sache, dass auch mit dem James Verb Teleskop werden wir einzelne ähm Atmosphärengase wahrscheinlich bestimmen können oder das hoffen wir auf jeden Fall bei dem Trapistein-System.
Tim Pritlove
Also von den einzelnen Planeten von Trapp ist eins. Planeten. Mhm.
Lena Noack
Einzelnen Planeten ganz genau,aber die Komplexität der Daten die wir jetzt von dem Spektrum, vom Mars, von der Atmosphäre oder von der Venus haben, werden wir nicht haben, weil wir einfach viele Störungen haben und die Lichtquelle einfach relativ schwach ist.Das heißt ähm wir werden aber hoffentlich einzelne Gase bestimmen können und das wird uns schon helfen,zu unterscheiden, wie die Oberflächen sich weiter oder die Atmosphären sich weiterentwickelt haben von den Planeten, zum Beispiel, ob eine Atmosphäre gleich Sauerstoff hat.Auf der Erde. Sauerstoff hat sich ja durch die Entwicklung des Lebens an der Oberfläche erst gebetet. Also wenn man sich die frühe Erde anschaut, äh dann sieht man keinen Sauerstoff in der Atmosphäre,Das Stickstoff gewesen, äh wahrscheinlich auch CO2 in größeren Mengen, eventuell auch Methan.
Tim Pritlove
Also der Sauerstoff war schon da, aber war eigentlich eine Atmosphäre.
Lena Noack
Genau, also es gibt äh der der Planet selber besteht tatsächlich äh hauptsächlich aus Sauerstoff,das Element, das am meisten chemische Element, das am meisten in der Erde vorkommt, aber wirklich O zwei, das was wirkt wirklich zum Leben brauchen, ist erst durchleben durch Laualgen im Ozean entstanden.Und wenn wir jetzt Sauerstoff an einem anderen Planeten messen würden, wäre das natürlich erstmal eine Sensation.Muss aber nicht unbedingt bedeuten, dass es dort auch Leben gibt oder auch Photosynthese gibt, was halt bei uns im Sauerstoff äh.
Tim Pritlove
Aber würde auf jeden Fall alle schon wieder total nervös machen, die Information.
Lena Noack
Ganz genau, interessant wäre es dann halt Kombination von Gasen zu messen, ne, also wenn man jetzt Sauerstoff und Methan zum Beispiel zusammen messen würde, was beides ähm auf eine für eine biotische Aktivität hindeuten könnte,aber sich gegenseitig auslöschen, also Methan und Sauerstoff nebeneinander reagieren miteinander. Dann könnte man dadurch,eine stärkere Vermutung anstellen, dass es dort Leben geben könnte. Und das wäre eine unglaublich spannende Sache.
Tim Pritlove
Okay, alle sind äh scharf auf Trappist eins, aber wir haben ja schon äh erwähnt, gibt ja auch noch einen anderen interessanten Kandidaten, nämlich Proxima Zentauri.Weil's halt so nah dran ist. Das sind, glaube ich, so vier, fünf äh Lichtjahre in der Größenordnung, dass du quasi umme Ecke äh in Weltraumsprache.Ähm was was weiß man denn dort äh über diese Exoplanetenkonstellation?
Lena Noack
Genau, also bei wurde vor ähm einigen Jahren auch ähm fünf Jahre ist es, glaube ich, her, ein Exoplanet gefunden. Hinter sich,dem Planeten kennen wir tatsächlich nur die Information, wie stark der Planet den Stern zum Schwanken anregt. Also wir können praktisch eine Idee davon haben, was die Masse von dem Planeten ist. Wir wissen's aber nicht genau.Und das ist genau das Problem ähm.
Tim Pritlove
Müssen wir das nicht genau, wenn da so nah dran ist.
Lena Noack
Bei den Trapisplaneten ist äh der Vorteil, dass der Planeten wirklich in dem Orbit vor dem Stern ihre Laufbahn ziehen. Und dadurch können wir praktisch sehen, wie groß ist der Planet, weil er einen bestimmten Bereich des Sterns verdunkelt.
Tim Pritlove
Und prox über ist anders gekippt sozusagen.
Lena Noack
Ganz genau. Wir sehen es.
Tim Pritlove
Obendrauf. Ah ja. Mhm.
Lena Noack
Können nur sehen, was es praktisch dieser Schwankungsbereich des Sterns. Und es gibt einen gewissen Massebereich, der dafür in Frage kommt. Wir wissen aber tatsächlich nicht zu hundert Prozent, dass es ein Gesteinsplanet ist. Die Wahrscheinlichkeit ist aber relativ hoch.Was wir mittlerweile auch wissen ist, dass es dort ähm scheinbar einen zweiten Exoplaneten gibt. Ähm das ist aber noch nicht zu 100 Prozent bestätigt. Der äh allerdings um einiges massereicher ist und äh wieder so eine super Erde darstellt.Und es gibt noch andere.
Tim Pritlove
Also der Begriff Supererde sagt wirklich nur.
Lena Noack
Supergroße Erde.
Tim Pritlove
Einfach größer. Nicht toller. Ganz genau.
Lena Noack
Super Erde ist äh der Begriff, der bedeutet, dass ein Planet äh größer als eine Erdmasse ist äh oder oder ähm massereich jetzt eine Erdmasse ist, bis zu ungefähr zehn Erdmassen.Und äh das ist eine Klasse von Planeten, die man tatsächlich nicht kannte, bevor man die ersten Exemplaten entdeckt hatte und bevor man CoRo7 B und Kepler 10 B die ersten zwei Gesteinsplaneten entdeckt hat, die beide solche Supererden sind.Ganz genau.Und ähm bei ist halt das Spannende, dass der Planet so unglaublich nahe dran ist. Also auch wenn wir tatsächlich nicht genau wissen, wie groß der Planet ist und die Masse nicht genau bestimmen können.Einfach die Tatsache, dass dort ein Planet ist, der wahrscheinlich in einem Massebereich ist, der ein Gesteinsplanet sein könnte.Ähm der eventuell flüssiges Wasser an der Oberfläche haben könnte, weil er tatsächlich in einem Abstand von dem Sternkreis wo flüssiges Wasser möglich wäre. Allein das macht diesem Planeten unglaublich äh interessant.Und ähm klar kann man sich fragen, warum fliegt man nicht einfach hin? Ähm das ist so der nächste Nachbarstern. So weit weg ist er doch gar nicht.
Tim Pritlove
Wenn schon das Licht fast 54. Lichtjahre braucht.
Lena Noack
Genau ähm in Star Trek ist das kein Problem, aber für uns ähm kann man sich vorstellen, äh wie weit es eigentlich Pluto entfernt von der Sonne,und ähm der dir Abstand zu ungefähr achttausend mal der Abstand von Pluto zur Sonne. Denkt man sich nur gut 8000 Mal klingt das immer noch nie so wahnsinnig viel,aber die äh Mission ähm,tatsächlich dem Pluto vor nicht allzu langer Zeit besucht hat. Hat ungefähr zehn Jahre benötigt, um von der Erde zum Pluto zu kommen. Das heißt, wenn man das mal 8000 rechnet, ähm dann findet man da relativ schwer einen Geldgeber, der das finanzieren.80.000 Jahre warten.
Tim Pritlove
Ja ist ein bisschen äh genau bisschen schwierig.
Lena Noack
Aber es gibt da tatsächlich Ideen, wie man das vielleicht etwas schneller hinbekommen könnte und es gibt eine Initiative, die nennt sich äh Starshot, ähm die wurde von Steven Hawking und einem amerikanischen Milliardär Yuri Millner ähm und anderen auch geplant,und da ist immer noch die Hoffnung, dass man da vielleicht innerhalb von einer Generation Information von kriegen könnte.Und äh das Hauptproblem ist, wenn man äh eine Masse, also eine schwere Sonde hat, die tatsächlich so schnell zu beschleunigen, dass sie auch nur annähernd,nicht mein zehnte Lichtgeschwindigkeit, aber auch nur annähernd in die Region von Nichtgeschwindigkeiten kommen. Ähm das das können wir einfach, nicht, nicht äh das ist nicht möglich,technisch. Wenn man sich jetzt aber ganz kleinst äh Körper Minisunden vorstellt, die mit einem Laser beschleunigt werden und damit pratscht die Energie bekommen und dann ist so ein System verlassen können, dann ist die Hoffnung,Die Technik muss noch entwickelt werden. Ähm aber die Hoffnung ist, dass man dann vielleicht auf ungefähr einen Fünftel der Lichtgeschwindigkeit kommen könnte.Und dann braucht man schlagartig nur noch 20 Jahre. Bis zum.
Tim Pritlove
Das ist ja dann schon mal so eine Größenordnung mit der die Raumfahrt eigentlich arbeiten kann.
Lena Noack
Genau. Bisher ist es noch rein spekulativ, weil die Technik dafür noch entwickelt werden muss. Die Materialien, die diese Geschwindigkeiten aushalten können, müssen noch entwickelt werden.Aber bisher ist man da noch recht optimistisch, dass man zumindest von diesen 80.000 Jahren auch vielleicht ein paar hundert Jahre runterkommen können,Das wäre schon tatsächlich eine andere Sache.
Tim Pritlove
Also es ist so diese Idee, so ein großes äh Lichtsegel zu haben, wo man von hinten mit einem dicken Laser reinballert und durch äh einfach das Anstoßen der von Ton mehr oder weniger die Geschwindigkeit dieses äh Raumfahrtkörpers zunehmend erhöht.Bis er eben fünftel der Lichtgeschwindigkeit erreicht.
Lena Noack
Genau das ist das Ziel, um innerhalb von 20 Jahren zu reisen zu können. Ob man das schafft, ist eine andere Frage, weil die Sonnensäge dürfen auch wieder nicht schwer sein. Die Masse ist wieder das Hauptproblem. Aber da gibt's vielleicht noch eine Hoffnung.
Tim Pritlove
Hm. Genau, es gibt ja immer Hoffnung, äh ist immer jemandem was eingefallen bisher. Ähm ich vermute mal, du bist da wahrscheinlich,dem Planeten auch mit der Modellierung dran.Eigentlich jetzt nochmal einen Riesenvorteil oder Vorteil vielleicht gar nicht so groß dadurch, dass dieser Stern so nah dran ist, müsste das ja eigentlich jetzt der der Stern sein, den man eigentlich am besten kennt, oder? Ist das so?
Lena Noack
Also für die Nachbarsterne, also äh Alpha Zentari ist ja ein Dreier äh Stern und Alpha Zentari A und B ähm das sind dann wieder größere Massereiche, Sterne, ähm Energie,reichere Sterne. Die kann man relativ gut bestimmen können. Äh proxymäßig ist ein bisschen schwierig,Genau und ähm tatsächlich spannenderweise,sind auch die die Daten für grade für die Zusammensetzung von dem Stern schwanken auch je nachdem wann man sich den Stern tatsächlich genau anschaut.Und äh da passieren auch interessante Sachen in dem Stern selber und auch da wird wieder viel ist wieder viel Forschung dahinter zu verstehen, wie tatsächlich das das Spektrum von einem Stern, das man misst mit der Zirkulation im Inneren von seinem Stern tatsächlich zusammenhängt.
Tim Pritlove
Das heißt, ist auch noch mal so ein Sonderfall, diese Sonne. Nicht einfach so ein Durchschnittsteil, was hier so normal verhält, sondern es nervt dann auch noch mit mit Abweichung.
Lena Noack
Würde's eher sagen, es ist ein interessanter Stern dadurch.
Tim Pritlove
Jetzt müssen wir ja zwangsläufig hier so ein bisschen philosophieren, nicht? Weil vieles wissen wir nicht. Jetzt haben wir ja viel drüber gesprochen, welche Ansätze es gibtsehr viel hängen von zukünftigen Missionen ab und natürlich.Auch äh wie schnell man mit diesen Simulationen vorankommt. Das hängt dann wiederum sehr an der Entwicklung der Computertechnik oder wie viel Rechenkapazität überhaupt so zur Verfügung gestellt wird der Wissenschaft.Was sind jetzt so deine Einschätzung? Einfach so aus dem, was man so weiß und wie sich das jetzt so alles in dieser relativ kurzen Zeit so entwickelt hat. Was,könnte da,realistischerweise sein. Ich weiß, dass es mit dieser Spekulation immer so eine Sache und wenn man da nicht die Daten hat, sonst könnte es so sein und es könnte so sein. Aber ähm was ist denn so das Gefühl? Das könnte man ja vielleicht auch mal abklopfen.So was wie eine Erde da oder woanders.
Lena Noack
Also erstmal zu der zu der Frage mit der mit der Datenlage und äh wie viel man spekuliert und wie viel man tatsächlich bestimmen kann.Das erinnert mich immer so ein bisschen daran, was wir über die Eismonde im äußeren Sonnensystem wussten, bevor das äh Zeitalter der Weltraumfahrt gestartet ist.Da hatten wir tatsächlich mehr oder weniger genau die gleichen Informationen mit genau den gleichen Beobachtungsdaten, die wir jetzt von den Exoplaneten haben,Wir konnten genauso Masse und Radius bestimmen. Wir konnten genauso über Spektroskopie Informationen von der Oberfläche von den Körpern sammeln. Und,Danach hat sich vieles bestätigt in den letzten Jahrzehnten, aber es gab auch große Überraschungen. Und gerade die Tatsache, dass so viele Körper im äußeren Sonnensystem flüssiges Wasser unterhalb der Oberfläche haben,ist die riesengroße Überraschung schlechthin. Das hat man vorher nicht erwartet. Und genauso wird es uns sicherlich bei den Exoplaneten auch gehen, dass die Daten, die wir jetzt haben,erlauben uns schon eine relativ gute erste Charakterisierung,die die erste grobeinschätzung von dem Planeten, genauso wie die erste Grubeinschätzung von vor 100 Jahren von den Eismonden, ist sicherlich nicht so weit weg,aber diese feinen Details ähm die sind viel, viel schwieriger natürlich ähm herzuleiten und,Frage, ob's eine zweite Erde geben könnte, also eine Erde, die praktisch genau die gleiche Voraussetzung hat wie unsere Erde, um Leben zu entwickeln. Das kann ich mir tatsächlich sehr gut vorstellen.Ob sich tatsächlich Leben bildet, das ist noch mal eine ganz, ganz andere Frage und die können wir zur Zeit einfach nicht beantworten,Wahrscheinlichkeit von 100 Prozent, wenn alles gegeben ist, das Leben entsteht.Na ja, ich sage mal so, wenn wir Spuren von Leben aufm Mars ähm finden sollten, die darauf hindeuten, dass früher als der Mars mal bewohnbar war, weil er flüssiges Wasser hatte, wenn sich dort auch Leben gebildet hat, dann deutet es darauf hin, dass es sehr wahrscheinlich ist.Dem Moment, wo's flüssiges Wasser gibt, wo's äh die Bausteine des Lebens gibt, äh chemische, komplexe Verbindungen gibt,dann sofort Leben entsteht, wäre sehr wahrscheinlich. Aber was passiert, wenn wir in unserem Sonnensystem, egal wo wir schauen, auch bei den Eismuten nirgendswo Leben finden, dann ist es wieder unwahrscheinlich, ja.Aber man kann keine Wahrscheinlichkeit herleiten, solange man nicht mindestens ein zweites Mal Leben irgendwo entdeckt hat.
Tim Pritlove
Von wie vielen Planeten im Universum kann man denn jetzt ausgehen? Ich meine vor 20 Jahren wusste man eben nicht, gibt's überhaupt welche?Jetzt hat man so viele gefunden. Ähm das kann man auch bestimmt ganz gut hochrechnen von den viertausend, die wir jetzt äh so gesehen haben.
Lena Noack
Pi mal Daumen genauso viele wie Sterne.
Tim Pritlove
Einzelne Planeten.
Lena Noack
Ganz Planeten, die auch erdähnlich sind.
Tim Pritlove
Also konkret die erdähnlichen. Genauso viel wie Sterne, also für jeden Stern gibt's auch irgendwie einen im Schnitt.
Lena Noack
Er hat ähnlich bedeutet wie der praktischen Gesteinsplanet, der, wenn er in einem richtigen Orbit ist, auch flüssiges Wasser an der Oberfläche rein theoretisch haben könnte. Das scheint wirklich sehr wahrscheinlich zu sein.
Tim Pritlove
Und wie viel Planeten an sich? Könnte man so finden, wenn man das hochrechnet? Also mit all den Gasriesen und so weiter noch dazu.
Lena Noack
So viele wie Sterne, die wir beobachten können. Tatsächlich ist es relativ schwer, eine Grenze nach oben zu ziehen. Und fast alle.
Tim Pritlove
Also ich dachte, es gibt jetzt schon so so viele erdähnliche, wie es Sterne gibt.
Lena Noack
Fast alle Sterne haben mehrere Planeten soweit wir wissen, also viel mehr als wir früher gedacht hätten,und äh dementsprechend ähm wenn fast jeder Stern oder die Hälfte der Sterne im Planetensystem haben mit mehreren Sternen sind's fünf äh mit mehreren Planeten, fünf Planeten sind's zehn Planeten,Dann ähm kann man sich entsprechend ausrechnen.
Tim Pritlove
Also insgesamt so fünf, fünf oder zehn Mal so viel, wie es Sterne gibt. Also oder mal anders ausgedrückt. Es ist jetzt relativ klar, wo's so Sternen gibt, gibt's auch Planeten.
Lena Noack
Sagen wir einfach, es ist die gleiche Größenordnung.
Tim Pritlove
Okay. Ja, aber das ist ja auch schon mal eine interessante Information, weil da war man sich ja nicht so sicher, ob denn irgendwie wirklich.
Lena Noack
Wusste man vorher überhaupt nicht. Genau und äh grad die Frage, wie wahrscheinlich es ist, dass man halt diese diese erdähnlichen Gesteinsplaneten hat. Ähm da ist man früher davon ausgegangen, dass es eher unwahrscheinlich ist und und äh wir eher die Ausnahme bilden und das scheint aber nicht der Fall zu sein.
Tim Pritlove
Das macht nämlich jetzt unser Sonnensystem wieder mal ein Momentchen normaler und in gewisser Hinsicht ist das ja auch ein beruhigender ähm Gedankedass wir hier ein relativ normales äh System haben, grade für äh eine Modellierung,Ja, also man kann sozusagen von den Beobachtungen, die wir hier gemacht haben, in all den Messungen, den ganzen äh Erkenntnissen, das was man hier konkret überprüfen kann, kann man eben auch sehr viele Schlüsseauf den Rest des Universums äh ziehen und das scheint einfach so der Normalzustand zu sein,Gedanken irgendwie, dass wir hier so in keine Ausnahme sind, finde ich irgendwie bisschen beruhigender, auch wenn's am Ende natürlich auch vollkommen egal ist. Ähm,Also mal abgesehen davon, dass das eben so dieses Potenzial leben und so weiter hat. Was macht denn diese erdähnlichenPlaneten jetzt so sehr viel interessanter fürdeine Arbeit. Ich meine, man könnte ja sicherlich auch, was ist ein Gasriesen, auch eine ganze Menge Informationen rausziehen und da sie sich ja sogar noch ein bisschen einfacher beobachten lassen, wäre das ja eigentlich eine sehr naheliegende Disziplin. Warum hast du dich denn jetzt so auf diesen erdähnlichen so,eingeschossen.
Lena Noack
Also ich find's halt spannend, äh zu sehen, dass wir in unserem Sonnensystem,vier Gesteinsplaneten haben, also Merkur Venus, Maß und Erde, die sich alle vier doch sehr unterschiedlich entwickelt haben, obwohl sie aus mehr Damien gleichen Material entstehen.Bei den Gasriesen, also zumindest so, wie wir sie äh auch von Beobachtungen her verstehen können,scheint es in den geradlinigeren Weg zu gehen in der Entwicklung,Während äh gerade bei den Gesteinsplaneten ähm die Wege, die der Gesteinsplanet gehen kann oder die Oberfläche, ob's Plattentektone gibt, ob es Vulkanismus gibt, ob Leben an der Oberfläche entstehen kann, so unterschiedlich variabel istund von sehr vielen anderen auch äußeren inneren Bedingungen abhängt. Das finde ich finde ich extrem spannendNatürlich ist die Frage nach der Bewundbarkeit von dem Planeten eventuell Leben auf einem anderen Planeten zu finden. Einer der der Hauptdriver für diese Frage.Gar keine Frage.
Tim Pritlove
Mhm. Jetzt ist natürlich diese ganze,Frage nach Leben und ich weiß, das ist jetzt nicht so dein dein Feld, Astrobiologie ist ja noch mal äh eine ganz andere äh Disziplin, aber das spielt ja hier alles auch so ein bisschen mit rein. Ähm,Gibt es denn aus den aus dieser Forschung schon in irgendeiner Form Indizien, dass ein.Leben, was anders funktioniert, als das, was wir von unserem System her kennen, irgendwie eine Option ist. Äh oder gibt's irgendwie Dinge, die das,ausschließen oder ist es einfach allgemein noch offen und man kann darüber wenig sagen. Es gab ja malpaar Jahren mal diese fälschlicherweise von der NASA publizierte Studie, die ja so glaube ich nahegelegt hat, dass,Ähm genau, was war das?Genau der so ein asinbasiertes äh äh Leben möglich ist. Das wurde ja dann wieder äh äh zurückgezogen. Das war ja schon mal so ein kurzer Aufreger, aber so einfach generell ist das natürlich ein interessanter Gedanke, dass äh,dieses Leben, also dieses sich selbst in irgendeiner Form weiter äh entwickelnde Aktivität von von,Materie, um's mal allgemeiner zu formulieren, eben auch noch auf was anderem basieren kann als eben auf diesen Aminosäuren und so weiter, wie wir das hier so.
Lena Noack
Ja, da beschäftigen sich natürlich sehr viele damit und schauen, warum sind wir denn eigentlich Kohlenstoffbasiert? Äh warum benötigen wir Wasser? Was sind eigentlich die positiven Eigenschaften davon?Und ähm wenn man sich ganz allgemein überlegt, wie so ein Lebenszyklus funktionieren könnte, was was benötigt man? Man benötigt ähm zum Beispiel einen,so etwas wie eine Zelle, in der ähm Bedingungen, Drucktemperatur, Salzgehalt, was auch immer ähm relativ konstant gehalten werden kann, also um überhaupt in der Umgebung überleben zu können.Ähm musst oder müsste leben generell irgendeinen abschließbaren Bereich ähm entwickeln können. Also das Leben auf der Erde hat er Zellen entwickelt dafür.Dann kann man überlegen, okay, was für äh Eigenschaften braucht ähm so ein Material, um wie eine Zelle zu funktionieren, dass man vielleicht auch Wechselwirkungen nach außen hat, also Flüssigkeiten zum Beispiel,ausgleichen kann und Ähnliches. Und wenn man dann schaut, ähm welche chemischen Elemente sind da eigentlich prädestiniert dafür, um diese komplexen Systeme überhaupt erst zu bilden?Da ist Kohlenstoff tatsächlich prädestiniert dafür.
Tim Pritlove
Weil da einfach so reaktionsfreudig ist, sich mit allem verbindet.
Lena Noack
Genau, aber auch stabil ist. Er kann ähm äh Doppelbindung eingehen, er kann unglaublich komplexe Moleküle bilden,und ähm Silizium zum Beispiel im Vergleich wird ja in der Science-Fiction gerne als Alternative zu Kohlenstoff gesehen, ähm hat auch viele Ähnlichkeiten mit Kunststoff, aber hat diese Möglichkeit nicht.Und ähm grade was so die Silizium basiertes Leben angeht, denke ich mir immer naja an der Oberfläche fast allesGestein einer Oberfläche, ob's jetzt der Sand am Strand ist oder was auch immer besteht aus Silizium und trotzdem hat Leben kein Silizium eingebaut.Ist natürlich kein Ausschlusskriterium, gar keine Frage.
Tim Pritlove
Mal ein interessanter Blickwinkel.
Lena Noack
Und ähm ein anderer Blickwinkel, den ich ähm ganz spannend finde, ist, dass die chemischen Elemente, die tatsächlich im Universum am meisten vertreten sind,fast 1:1 die chemischen Elemente, die auch am meisten im menschlichen oder generell im Leben auf der Erde vertreten sind,Also Sauerstoff, Wasserstoff, ähm Stickstoff, äh Phosphor, Schwefel,neben dem coolen Stoff sind halt alles auch genau die Elemente, die am am leichtesten verfügbar sind.
Tim Pritlove
Und nicht nur jetzt bei uns, sondern generell.
Lena Noack
Generell im Universum, generell in jedem äh oder ja doch eigentlich in jedem ähm Sonnensystem äh würde man davon ausgehen oder jedem Sternsystem.Ist es natürlich so, wenn man jetzt von von Bedingungen an der Oberfläche ausgeht, also von einem, was ich jetzt wieder in den erdähnlichen Planeten äh nennen würde, also ein Gesteinsplanet, wo man halt eher da überlegt, ob Leben eine Oberfläche entstehen kann.Dort werden wahrscheinlich wirklich die besten Bedingungen für kunstoffbasiertes Leben und äh Wasser, was halt als zum Lösen von Mineralien aus äh Gestein sehr, sehr wichtig ist, ähm schon die prädestinierten Kandidaten.Sich aber Leben vorstellt, dass unter ganz anderen Bedingungen sich entwickeln würde. Dann haben wir schlagartig äh andere Eigenschaften, die wichtiger sind und dann ist vielleicht äh Silizium,wiederum interessanter. Das heißt, die Frage ist eher für mich nicht unbedingt, ob wir unterschiedliches oder komplett unterschiedliches Leben,auf einem Planeten genau wie der Erde erwarten würden, sondern eher unter welchen unterschiedlichen Bedingungen,Sind andere Eigenschaften von chemischen Elementen wichtiger als jetzt an der Oberfläche von der Erde. Und da gibt's vielleicht Möglichkeiten.
Tim Pritlove
Schwierig sein dürfte, das überhaupt erstmal zu erkennen wenn man gar nicht weiß, wo wonach mansuchen soll. Das ist ja so ein bisschen das Problem, weil man hat nicht diese klaren Indikatoren, von denen man weiß so, ah ja, okay, genau das verweist ja jetzt äh auf Leben. Es gab ja jetzt ähauch ähm jüngst bei der Beobachtung der Venus so verschiedene äh Rückmeldungen, wo vermutet wurde, ah okay, gibt es Verbindungen, die relativ klar auf Leben hinweisen, weil wir die ohne Leben so äh diese Verbindung so nicht gesehen haben. Ich nicht so ganz so sicher, ob sich das überhaupt bestätigt hat. Ich glaube, da gab'sdran.
Lena Noack
Es hat sich leider nicht bestätigt, hat aber da auch wieder eine neue Forschung angekurbelt, weil gerade dieses Gas, was in der Venus leider dann doch nicht entdeckt wurde, äh.
Tim Pritlove
Genau das war's. Mhm.
Lena Noack
Könnte halt ähm wenn wir das sehr stark in einem bei einem Exoplaneten eine Atmosphäre entdecken würden, dort vielleicht eine gute Signatur für möglicherweise Leben auf der Oberfläche geben.Problem ist immer noch, dass eigentlich bei fast allen Gasen gibt es auch immer eine abiotische Erklärung.Also gerade dieses Gas, äh wo halt über bei der Venus viel spekuliert wurde, kann durch vokanische Ausgasung entstehen.Methan ist zum Beispiel auch äh ein Gas, was grade im Zusammenhang mit Maß oft diskutiert wird, ob mit Harngase aufm Mars existieren und wenn ja, ähm vielleicht biotisch ein Ursprung sein könnten, weil auf der Erde fast alles Meter an von Leben,produziert wird, aber eben nicht alles. Und es sind.
Tim Pritlove
Von Kühen sozusagen.
Lena Noack
Kommt nicht alles von den Kühen, es sind geringer Prozentsatz, aber ein gewisser Prozentsatz von den Methangasen auf der Erde werden durch die Erde selber produziert,durch Geologie und ähm deswegen ist auch Methan selber kein perfektes Gas, um auf Leben auf einmal einem Planeten hinzuweisen.
Tim Pritlove
Okay, also viele Rätsel bleiben noch äh erhalten. Wenn ich das richtig äh äh sehe, gibt's an der FU demnächst auch einen neuen äh Studiengang, der Leuten, die Gelegenheit bieten soll, äh hier noch tiefer einzusteigen. Kannst du dazu was sagen?
Lena Noack
Genau, wir richten gerade einen Masterstudiengang ein ähm in englischsprachiger Masterstudiengang wird es sein zum Thema äh Science ist ein Space Exploration,tatsächlich viele von den Themen, äh die wir heute hier angerissen haben, auch eine Rolle spielen werden. Ähm der Masterstudiengang ist offen für Studenten, ähmdiebeliebigen naturwissenschaftlichen Fächern kommen, können aus der Geologie sein, aber auch ein physikalisch, chemischer Hintergrund, biologischer Hintergrund, ähm steht äh ein naturwissenschaften frei der Studiengang.Ähm dort arbeiten wir tatsächlich ähm auch mit unterschiedlichen Forschern an außer universitären Einrichtungen in Berlin zusammen,Also wir haben ähm auch äh vortragende vom Museum für Naturkunde zum Beispiel vom deutschen Zentrum für Luft- und Raumfahrt,damit die Studierenden möglichst breites äh Spektrum an Vorlesungen ähm hören können und das geht von äh geologischen Entwicklungen ähm astronomischen Vorlesungen, ähm Planetenexploration,Fernerkundungsmethoden ähm also das gesamte äh Spektrum wird in den Masterstudiengang vertreten sein.
Tim Pritlove
Mhm. Wer äh was trägt äh das Museum für eine Naturkunde äh zum Beispiel dazu bei?
Lena Noack
Zum Beispiel von für Naturkunde geht es um Impaktforschung,oder auch um eine äh Feldexkursion, um sich einen äh Implakater und und vulkanische Krater,äh Deutschland anzuschauen und zu sehen, äh live zu erleben, ähm wie sich die Oberfläche entsprechend ähm diesen ähm geologischen Prozessen anpasst.
Tim Pritlove
Wahrscheinlich auch die Meteoritensammlung äh mit äh zum Tragengibt mir die Gelegenheit nochmal auf Raumzeit 6undachtzig zu verweisen, wo ich mit Ansgar gesprochen habe, äh über Meteoriten und äh wie man die alle hier so eingesammelt bekommt, unter anderem den man,Dächer abfegt und so. Großartiges Gespräch auch,Ja, super, viel Erfolg mit dem äh Studiengang. Ist das schwierig, so einen neuen Studiengang ähm durchgesetzt zu bekommen?
Lena Noack
Würde eher sagen, dass es eine sehr spannende Aufgabe. Ähm es ist auf jeden Fall viel Arbeit involviert ist, aber da dieser Studiengang bisher in Deutschland komplett fehlt,auch in Europa kaum äh Planetologie studiert werden kann, ähm ist das eine Herausforderung, äh die sehr dankbar ist,Und ich freue mich sehr darauf, dass wir in einem Jahr den Studiengang dann tatsächlich haben werden und bin sehr gespannt, wie's läuft.
Tim Pritlove
Ist das äh schwierig da so die Unterstützung der Universität dafür zu bekommen oder ist so das Bewusstsein für diese Themen schon da?
Lena Noack
Nee, auf jeden Fall, das wurde komplett unterstützt und ähm ähm ich denke, das äh wird auch den dem Berliner Raum sehr stärken,Dass wir diesen äh Masterstudiengang haben und äh auch da arbeiten wir halt mit unterschiedlichen ähm Instituten zusammen, um auch die,Praktika oder Praktikantenstellen zum Beispiel zu ermöglichen für die Studierenden, dass man auch zum Beispiel bei der Esel ein Praktikum machen kann oder beim Deutschen Zentrum für Luft- und Raumfahrt,um ein Gefühl dafür zu kriegen, was man nach dem Studium denn machen möchte.
Tim Pritlove
Mhm. Klingt super,Ja genau, vielen, vielen Dank für die Ausführung zur Exoplaneten insbesondere den erdähnlichen und was so äh von der Forschung dort in der nächsten Zeit so zu erwarten ist?Ist ja alles sehr viel äh fällig. Wir äh sind weiter dabei und drücken vor allem dem James Web Teleskop jetzt, die die Daumen, weil das scheint ja auch in dieser Disziplin wirklich eine.Schlüsselmission seien zu äh können und hoffen natürlich alle, dass wir hier auch noch viel drüber berichten können.
Lena Noack
Ja, ich bedanke mich auch.
Tim Pritlove
Genau und ich bedanke mich wie immer fürs Zuhören hier bei Raumzeit. Bald geht's wieder weiter und.

Shownotes

Wichtiger Hinweis der Metaebene

Ein wichtiger Zwischenruf aus der Metaebene

Die Metaebene gibt es nur, weil Ihr, die Hörerinnen und Hörer, sie finanziert. Es gibt keine Einnahmen aus Werbung und das soll auch so bleiben. Ganz wichtig sind die Daueraufträge, die viele von Euch eingerichtet haben. Nun ändert sich leider (ein weiteres Mal nach 2020) die Bankverbindung und ich bitte Euch, Eure Daueraufträge entsprechend abzuändern, sonst geht der Metaebene sehr bald das Geld aus. Die neue IBAN lautet DE85120400000028046100.

Dauer:
Aufnahme:

Spenden für die Metaebene

Inhaber: Tim Pritlove
IBAN:    DE85120400000028046100
BIC:     COBADEFF 

Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Hallo Leute, ich bin's Tim Brittlove. Ich brauche mal kurz eure Aufmerksamkeit. Das hier geht ausnahmsweise mal auf,
alle meine Podcast-Kanäle raus, da es einen dringenden Anlass gibt, der das leider erforderlich macht.
Und falls ihr mehr als einen meiner Podcast abonniert habt, kriegt ihr das auch mehrfach um die Ohren gehauen. Das tut mir total leid. Sorry dafür.
Aber das hier ist der Anlass. Viele von euch unterstützen mich durch einen Dauerauftrag.
Und ihr werdet euch erinnern, schon im letzten Jahr hatte ich euch gebeten, diesen Dauerauftrag auf ein anderes Konto umzustellen, weil ich Ärger mit der Bank hatte.
Das Blöde ist, dass ich nun wieder Ärger bitte neuen Bank habe und ich euch nun bitten muss, euren Dauerauftrag noch ein weiteres Mal,
umzustellen.
Das betrifft jetzt alle, die im letzten Jahr auf das Contest beziehungsweise Solarisbankkonto umgestellt haben. Das neue Konto läuft jetzt bei der Commerzbank und wird hoffentlich keinen weiteren Stress machen.
Wer noch auf das Bankkonto überweist oder sowieso PayPal nutzt, muss allerdings gar nix umstellen.
Ich weiß, dass es lästig und ich zwinge euch euch einmal mehr mit dem Online-Banking eurer Bank herumzuschlagen und es mir eigentlich auch sehr peinlich, aber leider ist das Kind hier nochmal in den Brunnen gefallen und ich brauche da eure Hilfe.
Ich werde zusehen, dass mir das nicht nochmal passiert und er Wege künftig alternativ auch äh ein Lastschriftverfahren anzubieten, brauche aber noch eine Weile.
An dieser Stelle möchte ich mich aber auch nochmal bei allen bedanken, die die Metaebene, teils schon seit Jahren unterstützen.
Ich werde mein Programm auch weiterhin Werbe- und Bullshit freihalten. Was mich allerdings weit von den großen Geldströmen fernhält, die da fließen.
Aber ich hasse Werbung und ich möchte, dass mir und euch nicht zumuten. Von daher bin ich auf euren Support dringend angewiesen und freue mich über jeden, der bereit ist, meinen Weg und Ansatz zu unterstützen.
Die Daueraufträge sind dabei aber die wichtigste Stütze, damit ich das auch weiterhin so machen kann wie bisher.
Da ihr euch diesen Sermon jetzt auch schon äh soweit angehört habt, hier noch ein bisschen Mehrwert für euch, denn ich
bekomme immer wieder mit, dass manche ganz überrascht sind, festzustellen, dass sich unter dem Namen Metaebene mehr als ein Podcast produziere. Also dachte ich mir, ich zähle mal kurz auf, was es hier sonst noch so zu holen gibt. Falls ihr es noch nicht kennt.
Da wäre zunächst einmal CRE, Technik, Kulturgesellschaft. Das ist mein ältester Podcast, mit dem er alles angefangen hat,
CAE bringt euch ausführliche Gespräche zu sehr unterschiedlichen Themen. Da fange ich jetzt erst gar nicht an, die alle aufzuzählen. Es sind nämlich eine ganze Menge.
Einfach mal rein, die Webseite findet ihr unter CRE Punkt FM.
Noch mehr Gespräche gibt es bei Raum Zeit, meinem Podcast war Raumfahrt und andere kosmische Angelegenheiten. Hier spreche ich mit Experten aus der Raumfahrt und anderen Wissenschaftlern über Missionen,
kosmische Realitäten und so weiter. Ich finde den Podcast ausgesprochen lehrreich, findet ihr auf Raumzeitstrich Podcast Punkt DE.
Ähnlich läuft's auch bei Forschergeist, der mir den Fokus auf Wissenschaft und Bildung legt. Aber auch hier gibt's ausführliche Interviews, die in die Tiefe gehen, gibt's auch Forschergeist Punkt DE.
Show deckt wiederum den aktuellen,
und allgemeinen Nerdbedarf ab wem nichts besseres passieren kann als vier Stunden am Nerds beim Quatschen über das Leben mit Technik im 21. Jahrhundert zuzuhören ist hier an der richtigen Stelle.
Gibt's auf Freak Show Punkt FM und wird auch live gestreamt, wenn's soweit ist. Bei Logbuch Netzpolitik geht's ans
Eingemachte, was aktuelle politische Ereignisse betrifft. Der Schwerpunkt liegt, wie der Name vermuten lässt auf Netzpolitik, aber es bleibt oft nicht dabei und das ist auch
gut so. LNP mache ich zusammen mit Dinus Neumann. Gibt's auf Logbuchstrich Netzpolitik Punkt DE.
Last but not least gibt's den jüngsten Podcast in der Metaebene Familie mit dem schönen Namen UKW,
oder auch unsere kleine Welt-UKW versteht sich als langfristiger Begleiter, langfristiger Geschehnisse und hat bisher äh den Brexit und die Coronakrise in die Fokus genommen. Jedes Thema,
hat in der Regel einen primären Gesprächspartner, sodass da ein bisschen Kontinuität ist,
weitere Themen, denke ich, werden irgendwann noch dazukommen. Entwickelt sich alles noch ein bisschen. Podcast gibt's auf UKW Punkt FM.
So und jetzt bin ich auch schon ruhig. Es gibt noch ein paar alte, beziehungsweise
selten aktualisierte Formate, die will ich jetzt hier nicht weiter wenn, das findet ihr alles auf Metaebene,
Punkt ME, wo ich auch ein kleines Block pflege, um die wichtigsten Dinge rund um ein kleines Projekt zu erläutern und dort findet ihr auch nochmal alle Informationen rund um diese Dauerauftragsumstellung.
Im Wesentlichen braucht ihr aber nur die neue IBAN euch von der Spendenseite mit der Ebene ME Slash Spenden äh zu schnappen und den Dauerauftrag entsprechend anzupassen und dann ist auch schon alles gut.
Ja und das war's dann auch von mir. Vielen Dank für eure Unterstützung und bis bald. Euer Tim.

Shownotes

RZ095 JUICE

Die ESA-Mission zu den Eismonden des Jupiters

Das Jupitersystem mit seine großen Zahl an Monden birgt noch viel Unbekanntes und im nächsten Jahr startet die ESA mit JUICE eine Mission, die sich weniger auf den Planeten selbst als vielmehr auf seine Monde konzentrieren wird. Finales Ziel ist der größte der sogenannten Galileiischen Monde Ganymed. Die Sonde wird in einen Orbit um diesen Mond eintreten und dabei das Objekt über einen längeren Zeitpunkt mit vielen Instrumenten aufs genaueste untersuchen.

Dauer:
Aufnahme:

Nicolas Altobelli
Nicolas Altobelli

Wir sprechen mit Nicolas Altobelli, Mission Manager der JUICE Mission am ESAC in Spanien. Wir reden über die Ziele der Mission, den langen Anflug auf das Jupitersystem und den Eintritt in den Orbit um Ganymed, die Instrumente der Sonde, wissenschaftlichen Ziele der Mission und die Besonderheiten und Rätsel, die uns die Monde des Jupiter heute noch aufgeben.


Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Tim Pritlove
Hallo und herzlich willkommen zu Raumzeit dem Podcast über Raumfahrt und andere kosmische Angelegenheiten. Mein Name ist Tim Pritlove und,Ja, ich begrüße euch hier zur 95. Ausgabe von Raumzeit und wie schon in den letzten beiden Sendungen, nämlich diese Sendung am Center auf in Madrid oder bei Madridman viel mehr sagen und ja, es hat sich hier noch ein drittes, schönes Thema ergeben. Heute soll es um eine Mission gehen, die Mission Juiceeine Isar-Mission zum Jupiter, die in einigen Jahren dann äh auch dort ankommen wird hoffentlich und ähm ja, dafür begrüße ich meinen Gesprächspartner. Heute nämlich Nicolar Altobelli.Schönen guten Tag,Nicola, du arbeitest hier auch im äh ESAG, ganz klar, aber ähm erzähl doch mal, was ist denn eigentlich dein Weg in die Raumfahrt gewesen? Womit äh hat es denn bei dir angefangen?
Nicolas Altobelli
Ja, eigentlich, also ich wurde als Ingenieur in Frankreich ausgebildet,ähm dann ging's nach Deutschland. Äh dort habe ich promoviert äh in der Physik,Am Max-Punk-Instut für äh Kernphysik, das ist ein Heidelberg und äh anschließend bin ich ähm nach Kalifornienäh für meinen ich war dort beim das ist eine Einrichtung der NASA. Ähm ich war dort Postdoc, habe mich mit den Saturnringen beschäftigt und auch mit äh,äh Interplantalen Internstaub äh Messungen ähmdie von eigentlich deutschen Instrumenten durchgeführt worden sind auf ähm sowie,und dann zwotausendsieben bin ich ähm zu der Esa gegangen, da habe ich eine Stelle bekommen. Äh ich habe erstmal,das Scienceplaning für die.
Tim Pritlove
Das war dann schon hier. Ähm.
Nicolas Altobelli
Hier, ja, das da war ich schon in Spanien, also ich bin schon seit einigen Jahren hier,Ähm also ich habe mich mit dem Scienceplaning von der beschäftigt, ähm dann mit Roseta,Ähm dort war ich als Operation Scientist tätig. Ich habe,die Verbindung mit den Instrumenten draußen, mit den Universitäten und ähm aufgepasst, dass die wissenschaftliche,Objektive der Mission und der Instrumente tatsächlich durchgeführt werden und.
Tim Pritlove
Roseta, die Mission, der Flug zum Kometen wahrscheinlich mittlerweile auch jedem bekannt, aber ich sag's vielleicht äh trotzdem nochmal, man guckt immer so schnell ins Plaudern mit die all diesen vielen Mission.
Nicolas Altobelli
Berühmten Kometen Entschuldigung auf.
Tim Pritlove
Genau.
Nicolas Altobelli
Ein großes Highlight ist er.
Tim Pritlove
Genau, auch ein großes Highlight hier bei Raumzeit. Ich hatte ja zwei Sendungen dazu, sowohl äh zu Rosetta, zur Mission als auch dann äh nach dem Filet gelandet ist und man wusste, was eigentlich passiert ist, auch nochmal zu.
Nicolas Altobelli
Das war eine Zeit,und parallel dazu war ich dabei beschäftigt. Für die Elsa habe ich als Projektwissenschaftler der ESA-Beteiligung für die Elsa für die Beteiligung der Elsa äh an dem Orbiter, an dem. Ähm.
Tim Pritlove
Also das war die Mission zum zum Saturn.
Nicolas Altobelli
Und ähm parallel dazu habe ich auch angefangen ähm ähm mit äh mit der zu arbeiten. Äh das war noch vor dem,der Ambition äh zwar zweitausenddreizehn, vierzehn ähm,und äh dann habe ich mich mit ähm mit dem Scienceconsegment beschäftigt. Ich passe auf, dass wir alle Software bauen, alle Prozesse ähm und die ganze Organisation ähm haben am Boden, damit die Wissenschaft,ähm reibungslos.
Tim Pritlove
Arbeiten kann. Genau, das hatten wir hier im letzten Gespräch mit hatten wir das ja hier ausführlich dargestellt, wie das hier so läuft, dass im Prinzip ja das E-Sagt so der,und ist für Wissenschaft weltweit,all den Missionen speziell natürlich bei der Isarmission, teilweise eben auch bei ähmin Kooperation mit Nasa und anderen äh Organisationen. Und das ist dann so quasi jetzt auch deine Aufgabe beim Juice.
Nicolas Altobelli
Ja, das ist noch meine Aufgabe und.
Tim Pritlove
Michelmanager heißt es dann, ne.
Nicolas Altobelli
Ja und jetzt mischen wir schon seit einigen Monaten. Äh das heißt, erst wenn die Miktion gestartet wird, wenn wir im Aal sind, wenn alles gut läuft, nach der Commissioning-Phase.Werden sozusagen die Schlüssel übergegeben an unser Zentrum hier im in Spanien und wir sind dann für die ganze Mädchen zuständig.
Tim Pritlove
Wie ist es denn jetzt zu dieser Juice-Mission gekommen? Ähm man es gibt ja immer wieder verschiedenste Vorschläge. Auch das hatten wir hier in der letzten Sendung noch mal ausführlich dargestellt. So dieserBattle um. Wer kriegt denn jetzt den Zuschlag und wo es den überhaupt,dafür da und dann werden Missionen auch mal wieder eingestampft. Das war ja jetzt auch nicht der erste Versuch, eine Jupitermission bei der Esa zu starten.
Nicolas Altobelli
Ich würde sagen ähm ohne zu übertreiben die mit die Idee ist wirklich,hat im 17. Jahrhundert angefangen, ja, als Galileo, die Galileo Mondon entdeckt hat,weil man nutzt wirklich diese Mission zum Außensonnensystem. Man muss sie wirklich in einem großen Rahmen sehen, ja. Wir knüpfen an die Ergebnisse äh der früheren Mission an, wirklich, ja? Also ähm es gab natürlich die Galileo-Missionen in den Neunzigern von der NASA,und die haben dort natürlich die die Monte schon beobachtet und Jupiter und die haben,nur vorbeiflüge machen können, ja, also die die ähm und äh es war schon klar, dass diese diese Monte äh ein großes Potential insbesondere für die Astrobiologie hatten, ja und dass man irgendwann zurückkommen sollte und ähm uns das aus nächster Nähe beobachten sollte.
Tim Pritlove
Warum war das so klar, dass diese Monde da eine besondere Bedeutung haben?
Nicolas Altobelli
Ähm es wurde klar, dass die globalen Ozeanen beherbergen. Ja und ähm die Daten, die man damals gewonnen hat, äh die waren,von den insbesondere äh geworden ja und äh man hat gesehen, dass es dort eine Induktion geben sollte. Das ist eine leitende äh Schicht geben muss,unter der Eisschicht, ja? Und ähmModellen legen dar, dass wir globalen,äh aus salzigem Wasser haben. Und natürlichwurde auf der Erde dann in den Siebzigern, Achtzigern klar, dass ähm selbst ohne Licht ja am Boden der Ozeane das Leben entstehen kann. Es gibt diese äh berühmte äh ähm äh Schrotten, diese ähm.Äh schwarzer Raucher, glaube ich, heißt das, ja. Da sind am Boden der Ozeane äh wo Mineralien, äh wo Wärme ähm trotz,da äh trotz des Films, des Lichtes ähm Bedingungen äh schaffen können, wo Leben einfach entstehen und sich entwickeln kann,und natürlich bei den Galileation Monden gibt es kein Licht, ja, das ist unter der der Eisschicht, äh aber äh das Vorkommen von,flüssigen Wasserbaum erstmal eine Überraschung, ja? Äh die Mechanismen, wie man,flüssiges Wasser so weit weg von der Sonne. Bei einer solcher Kälte äh überhaupt erhalten kann, waren nicht ganz klar, aber allmählich hat man sich,die Physik angeschaut und äh es wurde klar, dass das gehen sollte. Und dann kam natürlich äh die ähm sensationelle Entdeckung von Casini, das war 205 im Saturnsystem, äh wo man,kleinen Mond an Celadus ähm entdeckt hat und die.Der der der den Mund kannte man schon natürlich, aber die äh Aktivität, die äh Geisers,Wasserdampfsaulen ähm die man vorher noch nie gesehen hatte, ja die waren ganz klar auf den Bildern zu sehen äh auch der Magnettometer hatte ganz klar gezeigt, dass es dort flüssiges Wasser geben sollte, aber,Dieser Mond, dieser Anceladus-Mund, im Gegensatz zu den Monden ist nur 250 Kilometer ähm hat nur ein 250 Kilometer Durchmesser,Das ist wesentlich kleiner. Äh man sollte man wäre niemals davon ausgegangen, dass solch kleine Monde äh überhaupt die Wärme behalten können über eine,eine lange Zeit, eine geologische äh relevante Zeit ähm und dass sie dann flüssiges Wasser ähm behalten können. Aber das ging und das ging durch,dieser Effekten der Gezeitenkräfte äh wodurch die ähm Elizitität der Bahn, des Mondes äh ein eine Verformung der Oberfläche und des Kerns verursacht wird. Ähm und dadurch,ähm der Mond an Wärme durch diese Reibung äh und äh diese Wärme reicht aus, um äh Wasser flüssig zu halten. Er hat man braucht,Radionike von der Einstellung des Sonnensystems nicht, ja? Die Wärme wäre schon seit langem weg.
Tim Pritlove
Mhm. Das ist ungefähr so, als ob man mit so einer dicken Bowlingkugel so einen Tennisball platt drückt und die ganze Zeit hin und her äh bewegt, dann entsteht natürlich auch viel Wärme, ne.
Nicolas Altobelli
Geknetet sagen wir mal ja durch die gravitativenKräften. Und ähm das war wirklich das erste Mal, dass ähm das hatte man natürlich vermutet, aber das war das erste Mal, dass dieses Modell tatsächlich mit Daten konfrontiert werden konnte, ja? Und dann hat man sich gesagt, natürlich,bei den Galiläen Monten, er sollte so was auch Ähnliches ablaufen können, ja? Wir wissen, dass die Monde in dieser sogenannten,Resonanzen ähm zusammenhängen, das heißt die ähm die,die die Periode, die umkreisen, die Jupiter ähm in einem Verhältnis von 1 zu 2 zu 4 für Ayo.Ähm ja Europa und ähm und diese Resonanzen ähm,für Ursachen auch eine gewisse Exentrizität der Barden, die wiederum äh dieses Durchkneten der Oberfläche,ähm hervorbringt, ja? Und was wir für die Gewinnung der Wärme brauchen. Also die.Sollte man sich,mit all diesem Vorwissen äh vorstellen, ja? Wir wissen, wie es bei,wir haben auch die Titan der der den Titan äh erforscht, also die Eismunden werden,ähm Astro ähm Astrobiologische Objekte äh für sich, ja? Äh,parallel dazu hat man so viele so Planeten gefunden, man hat viele äh Gasriesen gefunden, so wie Jupiter, ja? Dass man sich einfach sagt, okay, Jupiter,ist ein Aschetyp der Gasriesen.Ja und die Munde, die Eismonde, die sind auch sehr äh sehr wahrscheinlich ähm viel verbreitet im Universum, ja. Wir haben viel Eis,viele Geistriesen, man braucht nicht zu nah an dem zentralen Gestirn zu sein, ja? Man kann weit weg vom vom Stern sein und trotzdem geht es physikalische Bedingungen, die flüssiges Wasser,erlauben unter einer Eisschicht.
Tim Pritlove
Diese vier Galiläschen Monde, also der Dani med ähm Europa, Calisto und Io,halt so heißen, weil sie von Galileo entdeckt wurden. Das sind auch die größten Monde, sozusagen die ersten, die man auch gesehen hat, weil sie eben die größten äh sind und die sind ja jetzt eigentlich auch so das primäre Ziel dieser Mission.Also es heißt ja Juice steht für Jupiter ICMons Explorer, also man will explizit zu diesen Monden, man wird sich wahrscheinlich auch den Jupiter,anschauen, wenn man schon mal da ist, äh guckt man ja auf alles, was man äh kriegen kann, aber die der Fokus liegt wirklich auf diesen Mond.
Nicolas Altobelli
Und äh auf die Wechselwirkung dieser Monde mit dem Jupiter und mit der Mangeltrusphäre von Jupiter, weil man muss sich wirklich das System als Ganze betrachten, ja? Ähm das ist nicht so, dass die Monde äh isolierte Systeme sind, ja, die die hängen,die werden zum Beispiel von der Magnettosphäre, von der Strahlung des Jupiters ähm ständig bombardiert, ja, die Oberfläche wird äh verwittert und ähm,Also es gibt diese Rahmenbedingungen an der Oberfläche, die wir feststellen möchten, weil wenn wir die Ortsferne verstehen wollen,diese Hoffnung, dass Material aus dem Inneren nach außen kommt und durch die Oberfläche kommt. Wo wir das beobachten können, aber ähm,was dann passiert ist dann das Material wird bombardiert durch diese Ionen Elektronen ähm mit hohen Menge Energien ja und die,ähm verändern dann die ähm Eigenschaften des Materials, was vonunten kommt, ja? Und das ist so eine Art ähm Passol, würde ich sagen, ja. Wir wir müssen wissen ähm äh das Rätsel lösen, was wir sehen, was ist das genau? Sagt das uns,irgendwas über dem,über das Innere der der Munde oder müssen wir schon die ganze Effekte der Umgebung da äh abziehen und und wie machen wir das.
Tim Pritlove
Ein bisschen was übersprungen, also wir hatten diese alte Mission, Galileo, die halt,nur dahin geflogen ist und aber nicht in irgendein Orbit eingetreten ist, wenn ich das.
Nicolas Altobelli
Um die, ne, ne, ne, um die Jupiter, ja. Aber nicht um die.
Tim Pritlove
Aber halt nicht um die Monde, okay. Okay und dann gab's aber nochmal einen anderen äh Versuch, also nochmal eine andere Mission, die auch nochmal zum Jupiter fliegen sollte. War das diese Europa Klipper äh.
Nicolas Altobelli
Also das äh Europa Klipper äh wird eigentlich kurz davor oder kurz danach Juice äh starten, ja.
Tim Pritlove
Okay, also das ist auch noch auf der Liste.
Nicolas Altobelli
Genau, das sind die zwei nächsten Mädchen zum Jupitersystem.
Tim Pritlove
Okay, es gab ja jetzt von der NASA auch noch eine Mission Juno,die sobald man das, glaube ich, beurteilen kann, verhältnismäßig erfolgreich abgelaufen ist. Da gab's auch ein paar Probleme, die überkommen werden konnten. Aber deren Ergebnisse liegen sie also in dem Sinne noch nicht umfangreich,vor. Also das hat jetzt nicht so viel Einfluss auf diese Mission, oder?
Nicolas Altobelli
Momentan nicht. Ähm das heißt, wir haben unsere Pläne für die nicht verändert.Bleiben, so wie sie bei der Definition der Ermittlungen waren und ähm dafür gibt es einen guten Grund. Ähm äh,wissenschaftliche Ziele der Elsa, die werden durch,Die werden von der Gemeinschaft, von der wissenschaftlichen Gemeinschaft ausgesucht, ja? Das heißt, wir bieten, also der Direktor äh der Science-Drektor der Elsa bietet ähm regelmäßig um ähm um,Ideen und äh Ideen und ähm Vorschläge werden untergebracht äh.
Tim Pritlove
Vorgebracht, ja. Mhm.
Nicolas Altobelli
Ähm dann das wird begutachtet, äh technisch ist es machbar, äh ist das bezahlbar im im Rahmen des BudgetsÄhm aber die Fragestellung, die wir damals hatten für die die bleiben erhalten, ja? Und ähm es wäre viel zu früh, um irgendwas zu ändern, basierend auf die Erkenntnisse von einer Million.
Tim Pritlove
Mhm, klar.
Nicolas Altobelli
An sich auch ähm spezifisch auf äh Jupiter konzentriert, ja, auf die Atmosphäre.
Tim Pritlove
Mhm. Jetzt ähm steht ja der Start auch relativ,an, also ich glaube derzeit steht es so im Juni zwanzig zweiundzwanzig äh.
Nicolas Altobelli
August, September zwoundzwanzig, ja.
Tim Pritlove
Hat sich schon wieder.
Nicolas Altobelli
Ja Ende August.
Tim Pritlove
Geändert. Okay, gut.
Nicolas Altobelli
Ja
Tim Pritlove
Also nächstes Jahr,Wir kennen das ja schon, äh nichts findet wirklich pünktlich äh statt und was ist schon was ist schon pünktlich? Ähm aber man kann das ja auch nicht beliebig verschieben, ne. Also man hat da ja sozusagen auch nur so bestimmte Zeitfenster, die man nutzen kann.
Nicolas Altobelli
Genau, ja. Ähm äh wir haben ganz bestimmte Startfenster, ähm die davon abhängen,wie die äh Planeten sich weil wir brauchen natürlich,die gravitativen ähm gravitative Hilfe der Planeten, um,zum Jupiter zu kommen ne und äh wir wir können nicht einfach so viel spritten äh äh nicht so viel bedanken, dass wir direkt zu Jupiter fliegen können. Wir brauchen.
Tim Pritlove
Wäre auch zu einfach.
Nicolas Altobelli
Vorbeiflüge an den Planeten, genau wo man Energie gewinnt,also die Reise wird in der derzeitigen Planung 7,5 Jahre dauern.
Tim Pritlove
Das ist schon so einiges. Im Vergleich würde man jetzt wirklich beliebig viel Treibstoff nehmen können und man würde jetzt mit der stärksten Rakete starten und man würde direkt dahin schießen. Wie schnell wäre man dann da?
Nicolas Altobelli
Ich weiß es nicht, aber sie sollten bremsen können. Ja das ist.
Tim Pritlove
Ja ja klar, ich meine nur also unabhängig vom.
Nicolas Altobelli
Schnell, ja ich würde.
Tim Pritlove
Nur wie lange wird es dauern, um mal so ein.
Nicolas Altobelli
Ein gutes Beispiel dafür ist Galileo, ja? Die sind mit dem Schotttel gestartet damals in den Neunzigern, aber die hatten noch einen einen Brusttriebwerk an Bord und die haben gezündet und ähm,Ich rede von JuLis ist eigentlich, die die ist bis zum Jupiter geflogen und dann vorbei, vorbei flog an Jupiter. Ja und die haben nur zwei Jahre dafür gebraucht, ja.Nicht Galileo, Julius.
Tim Pritlove
Julisses, okay, habe ich verstanden. Also man man legt sozusagen nochmal fünf Jahre drauf auf das.
Nicolas Altobelli
Dort nicht sich äh äh das Ziel der Mission war nicht Jupiter, ja? Das war mein Vorbeiflug zu machen und dann ähm.
Tim Pritlove
Ne, aber ich wollte ja so mal so den den die direkte Verbindungbisschen ein Gefühl dafür zu bekommen, wie viel äh extra Zeit man jetzt hier eigentlich investiert und äh ja, fünf Jahre, die werden damit verbracht, äh einmal an der Erde vorbeizufliegen, dann nochmal an der Venus.Nochmal in der Erde, nochmal in der Erde und dann hat man sozusagen richtigen Geschwindigkeit und so weiter, um wirklich beim äh Jupiter anzukommen.
Nicolas Altobelli
Eigentlich einen Mundvorbeiflug, ja? Das ist äh das ist ein Erdenmond vorbeiflug. Bei bei einem von diesem Erdvorbeiflug.
Tim Pritlove
Mhm. Dann nimmt man sozusagen beide auf einmal.
Nicolas Altobelli
Beim 400 Kilometer von der Montoberfläche fliegen.
Tim Pritlove
Hat sich die äh Traktorie ausgedacht, dass es dann äh Arbeit der äh Iso.
Nicolas Altobelli
Der sind die Spezialisten der von Mission äh Mission Analysis.Und äh die versuchen immer die die besten Rektoren zu finden, wo man am wenigsten Treibstoff ähm braucht,zum Hipiter zu kommen und so viel Nutzlast bringen kann. Ja, man muss natürlich bedenken, die die die das Satellit wiegt ungefähr fünf Tonnen, ja und davon haben wir fast drei Tonnen Treibstoff und nur sage ich mal zwohundert20 Kilogramm Nutzlasten, äh sprich Instrumente und ähm.
Tim Pritlove
Was braucht.
Nicolas Altobelli
Ganz üblich bei der bei der bei der Erforschung, ne.
Tim Pritlove
Um dahin zu kommen. Also wie viel Aufwand, also wie wie viel also von dem, was nicht Treibstoff ist, wie viel ist jetzt einfach nur für den Flug äh an Bord und ähm das ist äh.
Nicolas Altobelli
Für den Fuchs meinen.
Tim Pritlove
Da was man sozusagen an an äh Navigation und äh so weiter benötigt.
Nicolas Altobelli
Also man benötigt natürlich eine Antenne, ja und muss die Daten übertragen können. Man benötigt diese sogenannte Reaction, das sind diese kleine Räder. Das ist nicht so klein eigentlich, aber ja. Ähm.
Tim Pritlove
Mit dem man die.
Nicolas Altobelli
Ritter. Ja ja genau für man die Richtung äh ja einstellen kann, die Ausrichtung der Sonde.Man braucht natürlich ein ein thermisches äh die Kontrolle der der Temperatur des PSKs ja, weil man muss bedenken, wenn manerstmal zum Venus fliegt und dann zu Jupiter die Temperaturunterschiede sind äh riesig, ja? Zum Beispiel unsere die müssen Temperaturen zwischenzwohundert Grad Celsius bis äh minus hundertfünfzig, hundertachtzig Grad Celsius. Also das ist schon sehr aufwendig.
Tim Pritlove
Hundert Grad.
Nicolas Altobelli
Äh Unterschied. Das ist extrem ähm aufwendig für die Materialien, äh Materialien, die man da einsetzt.
Tim Pritlove
Okay. Gibt's noch was zur zu dem Anflug des äh ich würde mal sagen, es ist eigentlich ja relativ straight äh zu äh,so funktionieren solche Missionen heutzutage. Man ist es gewohnt, diese Flys äh zu machen. Diese Technik ist an der Stelle in gewisser Hinsicht auch abgehangen, was wir vielleicht noch erwähnt äh nicht erwähnt haben, halt diese Star-Tracker, um überhaupt erst mal zu wissen, wo man denn eigentlich ist.
Nicolas Altobelli
Genau, das ist, ja.
Tim Pritlove
Ne, ganz wichtig. So, aber dann läuft das ja mehr oder weniger äh und auch äh verhältnismäßig Energiearm, jetzt mal vom Treibstoff äh abgesehen und irgendwann mit der Hilfe all dieser anderen ähm Himmelskörper,man dann in den Orbit äh ein und jetzt geht's aber erstmal, wenn man ankommt ähm gibt's erstmal ein Orbit um den Jupiter selbst.
Nicolas Altobelli
Um die Gewitter. Also will ich mal erwähnte, wir müssen irgendwie bremsen, ja. Also wir fangen erstmal mit einer Phase der Mission, wo die Energie ähm des Orbits reduziert wird. Wir sindschon vom Jupiter abgefangen worden, aber die Orbit da muss man sich vorstellen, diese eliptisch ja und die die,Große Halbachse der muss dann ähm reduziert werden,und äh für die Navigation ähm brauchen wir auch diese Vorbeiflüge, ja an den Mond. Die die Vorbeiflüge, die dienen natürlich wissenschaftlichen Zielen, ja, aber die werden auch für Bandkorrekturen genutzt.Das ist ganz üblich bei solchen Missionen, die zum Beispiel das ist sehr treibstoff günstig insbesondere wenn man die Inklination der Bahn ändern will, ja, ähm relativ.
Tim Pritlove
Wie schräg zur Achse.
Nicolas Altobelli
Zur äh ja zur Equatorialebene eigentlich das,Planeten, genau. Und ähm das ist äh wenn man die Monden nicht hätten, äh das wäre sehr aufwendig, aber das äh Treibstoff äh angeht.
Tim Pritlove
Man ja sich sozusagen nur an einem Körper orientieren kann und dann muss man mit eigener Kraft diese Veränderung machen. Aber wenn man dann halt geschickt zwischen den Monden hin und her fliegt, dann wird man immer ein wenig in die eine Richtung gezogen.
Nicolas Altobelli
Schub äh an Gravita in gravitativen Schub von dem Mund,und ähm wenn man das richtig einstellt, dann kann man hingehen mehr oder weniger, wo man will, ja. Und das ist die ganze Magie äh von diesen äh Missionanalysisfleuten der.
Tim Pritlove
Das ist wirklich toll. An der Stelle kann ich nochmal auf äh eine alte Sendung hier bei Raumzeit äh verweisen, wo ich äh tatsächlich diese Missionsanalyse auch mal äh als solche vorgestellt habe. Ähm ist schon uralt die Sendung. Da muss ich jetzt glatt sogar noch mal nachschlagen.Aber ähm das ist wirklich,'ne tolle 'ne tolle Disziplin in der Raumfahrt die auch oft nicht so richtig gesehen wird, was was sie eigentlich für alle möglichen ähm,für alle möglichen äh Missionen leistet.
Nicolas Altobelli
Ja und man muss auch bedenken natürlich, dass die wissenschaftliche Ziele der Miethoden noch äh Vorrang haben, ja. Es gibt die Navigation, aber man muss man darf natürlich nicht vergessen, dass wir dort hinfliegen, um bestimmte Ziele zu erreichen,Es gibt immer ein Hin und Her zwischen wie viel Treibstoff brauchen wir, um das und das zu erreichen und äh ja, aber dann.Geometrie des Vorbeiflugs ist vielleicht nicht so genau, was mein Instrument braucht. Äh es gibt komplizierte Sachen, zum Beispiel äh Jupiteräh strahlt sehr viel ähm also Radiostrahlung, die eigentlich unser Radar ähmbeeinträchtigen. Die Messungen unseres Radars beeinträchtigen könnten, ja? Deswegen müssen die Vorbeiflüge äh so konzipiert werden, dass wir abgeschirmt werden von von diesem Rauschen von von diesem Jupiterrauschen.Also man kann sich dann vorstellen, wie lange die Überlegungen ähm,bauern, damit die Traktore optimal ist für sowohl für die Wissenschaft, für die Wissenschaft als auch für die Navigation.Und ähm ja, dann ähm die hm es gibt eine Phase der Mission, wo wir allmählich,die Neigung der Bahnebene des Satelliten erhöhen, damit wir eigentlich die äh Polen äh von Jupiter sehen können, beobachten können.Während dieser Phase sind natürlich dann weniger Beobachtungen von den Monden vorgesehen, ja? Wir werden mehr,also der Fokus mehr auf äh Jupiter richten. Ähm bevor wir dann in ein Orbit um ähm,eintreten und da muss ich sagen, Juice ist die erste Mission überhaupt, äh die um einen Mund kreisen wird, ja, also äh eingefangen.
Tim Pritlove
Wie groß ist der größte Mond, ne? Wie groß ist der im Vergleich zu unserem Mond vielleicht.
Nicolas Altobelli
Können das, nee, sie sollten das eigentlich mit Merkur vergleichen. Äh das hat einen Durchmesser von glaube ich ähm zwotausend äh siebenhundert,kilometer, das sollten wir im Wikipedia nachschauen.
Tim Pritlove
Ja. Mache ich gleich mal.
Nicolas Altobelli
Ähm äh das ist größer als Merkur. Also äh unsere Monden sind äh können wir so fast wie Planeten betrachten, ja, von der Größe her.
Tim Pritlove
Ich habe mal nachgeschlagen, also hat einen mittleren Durchmesser von 5.262 Kilometern. Das ist äh schon ganz gut, ne? Jetzt vergleichen wir das mal mit Natur.Nicht unbedingt immer alles so auf dem Zeiger und da ist der Durchmesser ja 4800 also sogar noch größer als.
Nicolas Altobelli
Größer als.
Tim Pritlove
Und dann kommt man dem auch sehr nah.
Nicolas Altobelli
Ja äh am,Ja, also nach einer Reihe von Vorbeiflügen, bevor wir überhaupt in den Orbit ähm eintreten, ähm kommen wir einige tausend Kilometer äh von der Oberfläche ähm,und aber wenn,wenn wir einmal in der im Orbit sind, dann sind wir bei erstmal wir haben eine olympische Direktorien äh zwischen fünfhundert Kilometer fünftausend Kilometer. Die wird dann zirkularisiert. Ähm dann sind wir bei fünfhundert.
Tim Pritlove
Also zirkularisiert heißt, man versucht sie immer kreisförmiger.
Nicolas Altobelli
Kreisförmiger zu gestalten, genau die große wird dann reduziert. Ähm so wie wir bei Jupiter beim Anfang.
Tim Pritlove
Mhm, auch schon gemacht haben.
Nicolas Altobelli
Haben. Ähm und wir bleiben voraussichtlich bei 500 Kilometer für den Rest der Mission,Es könnte sein, dass es noch, ähm, das muss noch studiert werden, äh, dass wir die, ähm, die, äh, die, die Höhe bei 200 Kilometer herabsenken, aber das ist noch ähm.
Tim Pritlove
Das heißt, zu diesem Zeitpunkt ist man dann auch schon ein bisschen befreit von der ursprünglichen Missionsplanung. Man ist da, man ist in einem Orbit und dann hat man einen Variablen, jetzt kann man sagen, okay, jetzt machen wir's mal so, jetzt machen wir's mal so.
Nicolas Altobelli
Man hat da äh da mehr Gewissheit darüber, wie viel Treibstoff noch übrig ist, ja. Das ist wirklich das Entscheidende.
Tim Pritlove
Okay, aber es ist dann sozusagen auch der der Anflug ist damit auch offiziell vorbei. Also man ist dann wirklich jetzt in so einem Betrieb und jetzt äh kann man sich eigentlich nur noch aussuchen, wie man so zwischen den einzelnen Moden hin und herhangelt, wird in Garnime der Einzige bleiben, um den äh ein Orbit angeflogen wird.
Nicolas Altobelli
Dann nicht mehr raus. Ähm das ist ganz wichtig zu verstehen. Also wir haben nicht genug Treibstoff, um da rauszukommen aus der aus dem.
Tim Pritlove
Also wenn man erstmal da ist, dann bleibt man da auch da.
Nicolas Altobelli
Und man endet auch dort, ja? Ähdas ist auch eine wichtige ein wichtiger Punkt äh bei der ganzen Sache. Es gibt diese ähm Pleitering Protection. Das heißt, wir dürfen äh breiteren Körper einfach nicht ohne Weiteres ähm beschmutzen, ja, mitäh irgendwelche Materialien und ähm bei den gaelieren Munden ist das natürlich sehr strikt. Das wird von einer,kostbare Organisation alles äh geregelt äh und alle Agenzis, alle Institutionen äh der Welt halten sich daran, die Öffentlichen, ja? ÄhmJa.
Tim Pritlove
Privaten wissen wir es noch.
Nicolas Altobelli
Privaten ist es anders. Ähm aber bei wir dürfen auf keinen Fall auf äh Europa äh abstürzen zum Beispiel, ja weil das astrobiologisches Potential hoch ist,äh bei wir müssen die ganze Sache kontrolliert ähm machen und das heißt der Absturz ähm oder die Landung, wenn man so will, äh wird kontrolliert äh äh erfolgen. Am Ende der Mission,die Miktion kann natürlich verlängert werden, je nachdem wie viel Treibstoff wir haben und so weiter, aber die OBIT äh dieser Orbit ist stabil. Ähm.
Tim Pritlove
Mit dem Resttreibstoff hätte man aber auch keine Chance, diesen Orbit komplett zu verlassen. Mhm.
Nicolas Altobelli
Nee, gar nicht, auf keinen Fall. Ja. Also wer zum Beispiel bei hat man äh das Ende der Miktion war einfach in in den Saturn einzustürzen und das war sauber, ja. Dann bleibt nix übrig von der von daher, von der von den Satelliten genau, da.
Tim Pritlove
Ein Gasplanet ist, so, aber muss man sich auch vorstellen wie so ein Merkur.
Nicolas Altobelli
Ja, aber bei ist die Wahrscheinlichkeit, dass wir dann Material äh unter die Oberfläche ähm reinbringen irgendwie viel geringer äh bei,den wir haben als bei anderen Morten. Ja und das wurde alles eigentlich berechnet. Äh das verursacht eigentlich zusätzliche Kosten zu unserer Mission, ja, dass man die äh ganz.
Tim Pritlove
Was heißt denn dann kontrollierter Absturz?
Nicolas Altobelli
Die Geschwindigkeit, der Ort, also vielleicht ja ähm die die und äh ja müssen.
Tim Pritlove
Aber was für ein Ort sucht man sich dann aus? Also,Also man weiß noch gar nicht, was sozusagen der am wenigsten schlechteste.
Nicolas Altobelli
Man muss sich dann vorstellen, wenn wir äh also nach diesen Monaten der Erforschung der Oberfläche werden wir in bestimmt Sachen ähm bestimmte Dinge sehen und äh das ist noch alles in der Schwebe natürlich.
Tim Pritlove
Aber wird auf jeden Fall auf.
Nicolas Altobelli
Dass wir nicht rauskommen.
Tim Pritlove
Mhm. Okay. Alles klar. Ähm aber die anderen Galiläschen wird man dann insbesondere in dieser ersten Phase auch zwangsläufig ja alle noch äh näher betrachtenkönnen, weil's Vorbeiflüge gibt, so ähm geht es denn nur um diese vier Galileation, Monde oder geht's letztlich um,Alle Monde, die in irgendeiner Form.
Nicolas Altobelli
Auch duntzende von diesen irregulären Monden natürlich und ähm wir sind jetzt in der Planung, also der high Level Planung der Mission und zwar es ist durchaus vorgesehen, dass wir äh nach diesen munden Ausschau halten.Äh das ist etwas knifflig, ja? Wir müssen natürlich die Disonde richtig ausrichten und ähm das braucht manchmal eine eine lange Belichtungszeit, ja, für für die Kamera und ähm,Aber wir werden Zeit dafür äh winden.
Tim Pritlove
Ich musste grad mal gucken irgendwie, wie viele Mohne es überhaupt gibt, weil es ja sind ja so,so viel dazugekommen in letzter Zeit, man verliert den Überblick, ne? Dreiundsechzig ist der Tipp, es sind neunundsiebzig jetzt.
Nicolas Altobelli
Ah, okay.
Tim Pritlove
Hat sich wohl im Juli 18 das letzte Mal geändert. Also da ist richtig Alarm.Ähm ja, weil es einfach auch ein riesiges äh System ist. Hatte hier bei Raumzeit auch schon mal eine Sendung zum Saturnsystem. Wir haben's auch Saturnsystem genannt, weil,Das gilt ja auch für den Jupiter,äh ist glaube ich ganz hilfreich ist auf die beiden äh Planeten so zu schauen, als ob sie so kleine Sonnensysteme für sich äh sind, ne, weil äh im Prinzip äh äh gescheiterte Sterne äh sind, so.
Nicolas Altobelli
System an sich, ja.
Tim Pritlove
Genau, ne und im Prinzip nochmal äh im Kleinen genauso funktionieren wie das Sonnensystem im größeren und deswegen ist es eben auch so, so vielfältig ins Dämonde, auch so vielfältig, so wie eben die Planeten des Sonnensystems in sich auch äh vielfältig sind.
Nicolas Altobelli
Werden auch die die die Ringe des Jupiters beobachten. Ja, die sind sehr dünn, die sind von der Erde nicht ähm sichtbar, aber mit ähm,mit der Sonde, mit Choice werden wir natürlich äh Beobachtungskampagne haben, wo wir bei hohen Phasenwinkel, also wenn wir ja die die Sonne äh günstig legt, dann können wir diese ganz,feine Körper, also das ist wie Staub, ja und wir können die die die diese Ringe äh um um den Jupiter erzeugen. Das werden wir auch auch beobachten können.
Tim Pritlove
Allein schon, damit man nicht zu sehr reinfliegt.
Nicolas Altobelli
Nee, der die ja und die stehen keine Gefahr da.
Tim Pritlove
Stellen keine Gefahr da. Okay, na gut, das ist ja schon mal was. Hm,Kommen wir doch vielleicht mal zu der eigentlichen wissenschaftlichen Auswertung äh Juice ist ja vollgepackt mit Instrumenten, elf Stück an der Zahl, wenn ich das richtig sehe.Wie blickt man nun auf Jupiter und seine Monde mit mit diesem.
Nicolas Altobelli
Ja, also in dieser Hinsicht ist Juice eigentlich eine ganz normale, sagen wir mal, interpleite Ambition. Wir haben diese Familien von Instrumenten, wir haben die Fernerkundung, Instrumenten auchRemut Sensing genannt. Ähm in allen Wellenbereichen ähm im Sichtbaren mit der Kamera und auch mit dem ähmInfrarotspektrum mit einem Laden Infrarot. Ähm wir haben äh wir können auchUV-Bereich beobachten, auch im Submillimeterbereich. Äh was neu ist, also das ist dieFamilie. Wir haben dann die Institutinstrumente, wo wir eigentlich die Gas ähm herumfliegen, um eine Space Craft direkt ähm einfach äh fangen können und studieren können vor Ort, also in,und wir haben auch äh natürlich die die Radiowellenexperimente mit ähm also wir wir werden einfach dieäh Verschiebungen der Frequenzen des äh Radiosignals beobachten können, was natürlich sehr viel über die die Eigenschaften der qualitativen Filter äh.
Tim Pritlove
Aussagen kann. Ja. Mhm.
Nicolas Altobelli
Aussagen kann, ja? Und was neu ist bei Juice, äh wir haben einen Ultimeter und äh das ist ganz wichtig, also man man schießt mit einem Laser ähmund man studiert dadurch die Verformung der Oberfläche, die Elastizität äh aufgrund der Gezeitenkräfte. Wir können auch diese die die.
Tim Pritlove
Über die Zeit sozusagen, also nicht nur, dass man einmal ein schönes dreidimensionales Modell äh erhält.
Nicolas Altobelli
Ja übersondere wenn wir regelmäßig schießen und versuchen die der Oberfläche zu verstehen ja. Äh die Verformung wird äh eigentlich auch durch die ähm durch das Radioexperiment verfolgt.
Tim Pritlove
Also man guckt den Tennisball beim durchgeknetet werden äh.
Nicolas Altobelli
Genau, live, ja, genau. Ähm und äh und wir haben natürlich einen Radar. Also das ist ein ähm,Ähm wir wir schießen diese Radauwellen und die können bis zu neun Kilometer Tiefe eindringen. Ähm man muss natürlich bedenken, dass es nicht umzu finden. Die Ozeane sind viel tiefer ja bei Europa, die sollten bei 15 Kilometer mindestens liegen bei ähm wahrscheinlich bei 100 Kilometer. Äh aber der Sinn der Sache ist natürlich auch die die Morphologie der Oberfläche zu verstehen und wie eigentlich dieähm Einschaffen des Eises und äh der der Eisschicht ähm,sich mit ähm mit der Tiefe äh verändert, ja? Und wir suchen insbesondere auch nach ähm ähm,äh Füßen Wasser, was vielleicht unter der oberen Eisschichten äh gefangen werden können.Ähm und die natürlich auch mit dem Radar die äh elektrische Eigenschaften und äh Leitfähigkeit des Eises ähm.
Tim Pritlove
Also man rückt, man rückt diesen äh Mond schon ordentlich auf die Pelle und vermisst sie quasi so in allen möglichen Wegen, die heutzutage State of the Art sind, würde ich mal das äh zusammenfassen.
Nicolas Altobelli
Ja genau, ähm verglichen mit den Instrumenten von Galileo damals äh haben wir eine viel bessere Auflösung äh bei also bei der Kamera zum Beispiel können wir bis zu drei Meter pro Pixel beobachten, ähm also zwischen 4hundert, drei Meter pro Pixel, das hängt natürlich davon abvon wo die ähm Bilder gewonnen werden, aber das istDas ist die Idee. Ähm bei dem Infrarot-Spektrummeter, also Laun-Infrarot äh haben wir eine Auflösung der Spektrallinie, die eigentlich auf vier, fünf Mal höher ist als das ähm,Instrument von Galileo damals, das war das Memesinstrument. Ähm also,Man kann wirklich sagen, dass wir mit äh den besten Instrumenten fliegen. Ähm was es gibt für für solche Zwecke.
Tim Pritlove
Das bedeutet ja auch, dass das Ding eine Menge Daten erzeugen dürfte und das ist natürlich dann über so eine Distanz, die dann auch äh alle zu übertragen, sicherlich auch eine Herausforderung.
Nicolas Altobelli
Ja natürlich, also ähm wir benutzen äh äh wie für alle,unten im Außen so ein System, das Deep Space Network und auch die die Antenne der Eser und der NASA. Ähm wir haben ähm,wir rechnen mit 1,4 Gigabits äh pro Tag,Ja und das ist wirklich eine konservative Annahme und ähm das wird sicher besser werden.Man muss natürlich nicht vergessen, dass jedes Mal, wenn wir Daten zur Erde übertragen,wir beobachten nicht, ja? Äh also vielleicht können die Institutinstrumente weiter beobachten, aber wir haben eine Feste, eine Antenne, die fest anSatelliten montiert ist und festgeschraubt. Das heißt, wir müssen den äh unseren Satelliten ausrichten zur Erde, damit werdet die Daten überhaupt übertragen können.Deswegen hier was wir hier machen das ist wirklich zu gucken OK welche Beobachtungen kann ich machen, wie viel,wie viel Daten erzeuge ich dabei und wie voll ist mein Speicher an Bord ja dass ich noch weitere Bewertungen machen kann bis ich,unbedingt meine Daten zu Erde übertragen.
Tim Pritlove
Warum ist denn die Antenne fest? Warum ist sie warum dreht die sich nicht?
Nicolas Altobelli
Also ähm das ist technisch äh extrem anfällig, wenn man anfängt, auf so einem Satelliten Dinge.
Tim Pritlove
Redende Sachen zu haben, ja.
Nicolas Altobelli
Und sie müssen auch ähm bedenken, wenn man etwas dreht, dann erzeugt man Vibrationen und die Vibrationen wiederum, die brauchen Zeit, um abgedämmt zu werden und dann für eine Kamera ist das ganz schlecht, ja,Äh wir haben aber tatsächlich eine,eine kleinere Antenne, die äh drehbar heißt, ja und wir brauen sie unbedingt bei den Vorbeifügen, wo wir gleichzeitig,das Gravitationsfeld verstehen wollen mit,dem äh Radiosignal, ja und gleichzeitig die Oberfläche beobachten wollen, ja? Da können wir nicht einfach sagen, das geht ziemlich schnell, ja, innerhalb von zwölf Stunden ist alles vorbei, ja und am Kloster-Coach, wie man sagt, äh sind wir nur eine Stunde da ungefähr, ja?Man kann einfach nicht sagen, äh ich drehe meinen Satelliten zur Erde und dann gucke ich die Oberfläche. Alles muss gleichzeitig ablaufen und deswegen haben wir diese kleinere äh drehbare Antenne.Die IMK-Bands und X-Band senden kannÄh und wir studieren dann das Signal äh was von dieser Antenne äh kommt und ähm.
Tim Pritlove
Die wir sonst nicht benutzt.
Nicolas Altobelli
Kann benutzt werden, ja? Also.
Tim Pritlove
Was äh ist der Vorteil von der größeren Antenne, die.
Nicolas Altobelli
Vorteil ist dann, die größere Quarantäne wird einfach ähm für alle Beobachtungen, alle Daten, die wir haben, äh jeden Tag.
Tim Pritlove
Kann auch mehr Daten übertragen.
Nicolas Altobelli
Viel mehr. Ja ja, das ist ähm äh das ist die die Basign sozusagen, ja. Wir uns aus Sicherheitsgründen auch äh müssen wir jeden Tag einen Kontakt mit äh mit der haben, ja? Das wird nicht alles ähm,ähm äh einfach live äh.
Tim Pritlove
Ja, aber die ist ja eh nicht, weil ich meine, wie lange werden die Daten brauchen von von Jupiter bis zur Erde?
Nicolas Altobelli
Das hängt das hängt davon ab, wann in der Miktion, aber wir brauchen mindestens ähm dreißig Minuten, glaube ich. Neunzig Minuten bei Saturn und äh ja fünfundvierzig.
Tim Pritlove
Dreißig Minuten war's das glaube ich 5zehn Minuten schon, ne? Je nachdem wie weit er weg ist.
Nicolas Altobelli
Fünfundvierzig Minuten. Ähm wir sind bei fünf AU. Hm ja. Aber.
Tim Pritlove
Dauert auf jeden Fall. Also mit Real Time ist da nix.Aber die kleine Antenne ist natürlich dann in gewisser Hinsicht auch eine Backup-Antenne, also sollte mit der Großen mal was schiefgehen. Aber dadurch, dass sie kleiner ist, wird sie natürlich höhere, fillertoleranzen äh haben und deswegen kann man nicht so viel Daten äh.
Nicolas Altobelli
Ja die die Ausrichtung muss auch ganz präzise sein bei KA Band, bei höheren Willenbereichen äh ist natürlich äh eine kleine Abweichung ähm für Wort sagtähm weniger Daten hatte und für den Fall der Fälle haben wir noch eine umniedirektionelle kleine Antenne äh aber das ist nur für ganz bestimmte ähm Fälle bestimmt, wenn zum Beispiel der Spillskraft ins Safe-Mode äh geht.
Tim Pritlove
Und nicht weiß, wo er ist.
Nicolas Altobelli
Nicht weiß wo er ist, dann sendet er in alle Richtungen und das wird von der Erde abgefangen, dann kann man sagen, okay, ja. Ähm.
Tim Pritlove
Hilfe.
Nicolas Altobelli
Der Satellite ist eigentlich ein Monster, ja, das ist äh er wiegt fünf Tonnen, wie ich schon mal erwähnt habe und äh müssen sich vorstellen, wie lange das dauert, um das Ganze zu drehen, ja. Wir haben,Sie sind 15 Meter lang, ja, wir haben 85 Quadratmeter insgesamt, äh also zehn5 Meter auf beiden SeiteWenn wir drehen, brauchen wir ungefähr dreißig Minuten für hundertachtzig Grad, ja. Also das ist nicht so, als kann man äh in allen Richtungen gucken, äh sehr schnell, ja. Es muss alles,äh geplant äh sein.
Tim Pritlove
Das heißt, das nutzt dann auch die Transportkapazität statt mit einer Ariane?
Nicolas Altobelli
Fünf oder sechs.
Tim Pritlove
Nutzt sozusagen die Transportkapazität der Areale auch vollständig aus.
Nicolas Altobelli
Wir bauen die die größere Variante der fünf oder sechs vier.
Tim Pritlove
Steht noch nicht fest, womit's gelauncht wird.
Nicolas Altobelli
Ähm das steht fest, da sollte nachher eine fünf sein, äh weil jetzt natürlich auch die Rede von Arena sechs, das hängt auch von den Plänen von Arena ähm wann die Medaillen 64 fertig sind.
Tim Pritlove
Okay, aber etwas, was in die Ariane fünf in die Große reinpasst, würde auch mit der sechs transportiert werden können, ohne ohne, dass man die Mission jetzt nochmal anpassen.
Nicolas Altobelli
Genau, das passen ja sechs vier.
Tim Pritlove
Okay, eine gewisse Kompatibilität ist gegeben. Was,Wir haben ja das teilweise ja auch schon angesprochen, aber was äh was verspricht man sich jetzt äh in der in der wissenschaftlichen Community,von dieser Mission. Also klar, man will die Eismunde untersuchen,schaut im Prinzip ja nach Lebensbedingungen oder im Idealfall ja sogar nach stärkeren äh Anhaltspunkten für Leben.
Nicolas Altobelli
Irrsinniges Leben.
Tim Pritlove
In irgendeiner Form,das wird ja sicherlich auch nicht das einzige sein, also was worauf warten die die wissenschaftlichen Teams dann eigentlich so äh vor allem.
Nicolas Altobelli
Also ähm einer der größten Punkte ist natürlich die Sinn, das ist natürlich die die Ozeane, ja. Ganz äh,eindeutig eine das ist die Astrobiologie, die Habitabilität. Das ist ein wichtiger äh Konzept. Ähm wir suchen nicht und ich muss das nochmal betonen, ja. Äh wir so nicht mal leben. Wir suchen nachBedingungen, die erdendliches Leben beherbergen.Und dabei spielt auch Jupiter eine zentrale Rolle, was man sich verspricht. Natürlich ist äh es gibtFragestellungen wie ähm die Energiekrise des Jubiters, wie die Energie vom Jupiter, vom Inneren nach außen transportiert ist, das versteht man nicht ganz. Ja, die die Modelle äh.Ähm sagen Temperaturen vorher in der Thermosphäre, die viel höher sind ähm als das, was man misst und äh das sind Sachen, die man verstehen sollte, weil natürlich die ganze Wechselwirkung des Jupiters mit entmonden ist entscheidend, um zu verstehen,die Monte überhaupt äh werden können, ja. Ähm benötigt Stabilität, ja. Nicht nur flüssiges Wasser,Wasser ist natürlich eine Voraussetzung, aber auch Stabilität, Zeit, damit Leben,entstehen kann und als ich entwickeln kann, Kontakt auch mit äh wichtigen Grundbau ähm äh Grundelemente des Lebens, ja? Ähm und wie gewinnt man diese Elemente? Man braucht,flüssiges Wasser in Kontakt mit Gestein zum Beispiel, ja? Und ähm man baut chemische Energie, ja? Also das ist wirklich, was ich die Community davon verspricht, haben wir,die Bedingungen einer Abiturität im Jubiter System als Ensemble, ja? Und können wir diese äh Bedingungen,dann zu den so Planeten und äh rübertragen. Was wir sehen hier im Sonnensystem ist, es ist was sehr verbreitet oder ist es eine Ausnahme.Ja und äh ich glaube, das ist wirklich die das Wichtigste bei der Mission und das ist natürlich nur eine Etappe ähm,Für die nächsten Mietionen und vielleicht kann man sich vorstellen, dass wir irgendwann auf Europa landen und dann äh oder und dann direkt unterirdisch beobachten oder.Die ähm in die Tiefe eindringen kann irgendwie. Ähm.
Tim Pritlove
Ist in der äh also ist einer von denen äh vergleichbar auch mit dem Enzelados, bei dem also der Enzelados der SaturnmondFällt ja schon dadurch auf, also als wenn die Bilder äh gesehen hat, da waren ja einfach diese massiven Wasserfontänen. Das sieht ja spektakulär aus und äh ähm einzigartig.Ähm bei den Monden ist es aber jetzt also bei den Monden des Saturns ist das jetzt so sichtbar nicht, findet so nicht statt.
Nicolas Altobelli
Des Jupiters meinen sie. Ähm ja, doch also,so sichtbar nicht, äh aber es wurden zwotausendvierzehn, fünfzehn und sechzehn eine Reihe von Beobachtungen durchgeführt mit Habeln äh und auch mit dem Teleskop, also mit Habel, das war, glaube ich, im UV-Bereich mit dem Cap,War eher im Infrarotbereich. Äh wo man gesehen hat, also Wasserdampfsauen ähm die sind wahrscheinlich nicht,immer da, aber das ist auch am Ventilator ist bekannt, dass hier nach äh je nach der Position von auf auf äh auf seiner Bahn, dann ändert sich die Aktivität, ja?
Tim Pritlove
Gerade gequetscht wird.
Nicolas Altobelli
Genau, genau wegen.
Tim Pritlove
Wie so eine Zitrone, wenn man sich drückt und dann schießt es ab und.
Nicolas Altobelli
Wurde quantifiziert und ähm,Und jetzt also die die Indizien, die auf ein Ozean ähm die einen Ozean naheliegen, sind natürlich noch ähm,dichter geworden irgendwie mit diesen Beobachtungen von Hable äh und dem mit dem Teleskop und einem hat manauch, glaube ich, 215 gesehen, wie die äh Polarlichter ähm,also das sind die, deswegen ist Jupiter ganz wichtig dabei, eine Menge Atmosphäre, weil wir haben diese hoch energetische Teichen, die äh am Jupiter ankommen und äh die werden von dem ähmFeld von äh abgelenkt und äh die für Hochsachen, diese diese Lichter und das Verhalten dieser.
Tim Pritlove
Also wie so eine Aurora jetzt auch auf der Erde.
Nicolas Altobelli
Genau, wie auf der Erde und äh das Verhalten dieser Lichter äh liegt nahe, dass man äh die eine leitende Schicht,bei 100 Kilometer im Inneren hat und ähm warum sage ich das alles eigentlich? Ja, die Frage am Anfang.
Tim Pritlove
Die Mundaktivität und die Ozeane, das ähm.
Nicolas Altobelli
Ja genau, nee, ich hätte lieber bei Hobby bleiben sollen. Und Kek, ja, also die Wasserdampfsäulen sind da. Äh die die sieht man, die gehen, also die die die schießen bis 150 Kilometer Höhe ins Welttal.
Tim Pritlove
Jetzt sagt Ozeane, wie muss man sich das vorstellen? Also äh wir reden ja jetzt nicht so von so offenen Ozeanen an der Oberfläche, wie wir das jetzt von der Erde kennen, sondern wir reden von Wasservorkommen, die aber,unter einer Gesteinsoberfläche außen eine Eisoberfläche, die keinerlei, also die nur Eis ist.
Nicolas Altobelli
Ja ja ähm diese diese Körper, also die sind ähm separiert. Das waren die die oder differenziert. Äh die dichtere Elemente sind.
Tim Pritlove
Nach innen mhm.
Nicolas Altobelli
Äh die leichteren wie Eis äh sind nach oben gegangen, also geblieben. Ähm.
Tim Pritlove
Das ja bei uns auch der Fall ist auf der Erde.
Nicolas Altobelli
Genau, so wie so wie bei der Erde. Wir haben einen harten Kern und ähm ja und,bei Europa insbesondere, da hat man die Thermophysikalische Modelle legen nahe, dass wir eine Einschicht von 50 Kilometer haben,weniger und dann ein Ozean, das heißt flüssiges Wasser, gesalzes Wasser wahrscheinlich, was bis zumKern bis zum Gestein erstreckt und das ist ganz wichtig für äh das Potenzial der Avitabilität äh des Mundes, äh weil wir haben, wie ich mal erwähnte, wir haben die Möglichkeit, wichtige Elemente, Mineralien ins Wasser, ähmMineralien werden von den vom Gestein äh ins Wasser ähm äh abgegeben, genau,Ähm diese Bedingungen hat man nicht unbedingt bei genial. Bei genial da hat man eher,Laut Modellen und äh Messungen hat man eher ein Ozean zwischen Eisschichten,Ja, es gibt, man muss sich so als ein Sandwich vorstellen, mit Fashion Eisschichten und dazwischen sehr wahrscheinlich ein Ozean von 100 Kilometer Dicken.
Tim Pritlove
Also wo das Wasser nicht mehr gefroren ist, eben durch diese gesamte Aktivität, dadurch dass das Ding einfach die ganze Zeit vom Jupiter so geknetet.
Nicolas Altobelli
Ja und Salzgehalt und auch, also das wird nicht alles durch die gravitativen Kräften äh ähm,bedenkt oder erklärt, ja. Auch äh thermodynamisch äh hat Wasser eine ganz eine ganz wichtige Eigenschaft, nämlich dass äh die Schmelzkurve,äh im Drucktemperaturdiagramm, also im Graben des Wasser, der hat eine negative äh Neigung. Das heißt, die Schmelztemperatur,singt mit Hirndruck,und das ist ähm von der Erde bekannt, zum Beispiel der Rostocksee im Antatika ähm 4tausend Meter unter der Eisschicht äh hat man flüssiges Wasser. Und dafür braucht man nur,Erhöhung des Drucks. Irgendwann hat man einen Punkt erreicht, wo äh das Wasser einfach schmilzt. Bei den Monden,Äh natürlich ist die Oberflächenlampe viel kleiner als bei der Erde. Wir sind bei Minus 160 Grad vielleicht äh am von Europa zum Beispiel. Ähm das heißt natürlich,Dieses ähm der der Druck muss natürlich äh groß genug sein, ähm aber.Der Mond muss selbst groß genug sein, damit der Druck diesen Wert äh äh mit der Tiefe äh ähm erreichen kann. Und beiEuropas scheint das zu klappen. Das heißt,Druck wird groß genug, die Gezeitenkräfte sind da und bringen die Energie und äh wir können diese ähm diese Wasserschicht habendie dann im Kontakt mit dem Kern ist. Bei äh das ist nicht unbedingt der Fall, ja? Da äh ist die Größe des Mundes, die ähmGezeitenkräfte sind äh weniger ausgeprägt als bei bei Europa, weil manweiter weg ist äh entfernter ist äh von Jupiter und alles in allem ähm,Es ist am wahrscheinlichsten, dass wir diese diese Sandwich ähm Organisation der Eis- und Wasserschichten haben.
Tim Pritlove
Mhm. Angenommen, man würde jetzt mal einfach so nehmen und auf die äh Umlaufbahn der Erde um die Sonne packen, also unter dieselben klimatischen Verhältnisse.Bedeutet, da würde dann einfach so ein Wasserball bei rauskommen.
Nicolas Altobelli
Enthält sehr viel Wasser in der Tat, dass es 30 Prozent bis 30 Prozent Eisfraktion ähm bei Europa haben wir viel weniger bis fünfzehn Prozent. Ähm die Monde äh tatsächlich,beherbergen wahrscheinlich mehr Wasser als alle Ozeane der Erde zusammen.Erde steht man sich immer als die blaue Kugel vor als ein Ozeanwelt, aber ist es nicht, ne? Das sind,70 Prozent der Oberfläche mit Wasser bedeckt, aber das ist nur eine Dicke ist ganz klein. Er bist ja zwölf äh hundert,paar Kilometer, zwölf Kilometer. Ähm bei Garnele ähm wir haben bis 100 Kilometer äh eine bis 1hundert Kilometer Wasserschicht und ähm also trotz des Unterschieden der Größe ähm hat Ganime,zweimal so viel ähm Wasser als äh als Erde. Deswegen muss man diese Eismunde wirklich als die Ozeanenwelt äh betrachten und nicht unbedingt die Erde.
Tim Pritlove
Wo kommt dann das ganze Wasser her? Also bei dem bei der Erde gibt's ja auch so diese offene Frage, so war das immer schon da oder kam das von irgendwo anders? Ähm wobei ich mich das eigentlich immer so ein bisschen frage, weil das ja einfach so ein grundlegendes Element ist, wo man ja durchaus.
Nicolas Altobelli
Also die die Frage ist eigentlich viel einfacher zu beantworten. Im Außensystem also die Erde, ja? Die die richtige Frage ist eigentlich, wo kommt das Wasser von der Herde her?Ähm bei den Galerischen Monden. Das ist einfach im Außensonnensystem, wo die flüchtigen Elemente also erst mal ist Wasser sehr weit verbreitet. Das ist äh das im im ganzen Universum sieht man Wasser überall, ja.Natürlich in Eisformen oder Dampf. Ähm und ähm daraus hat man natürlich hat mander den den Begriff der Abiturität, der Abitur Zonen äh hergeleitet. Das heißt, das ist der Abstandbereich von dem Zentralgestirn, wo Wasser sich dauerhaft äh auf der Oberfläche eines Planeten äh aufhalten kann, ja?
Tim Pritlove
Und im flüssigen.
Nicolas Altobelli
Im flüssigen Zustand. Und bei den Eismonden sind wir natürlich außerhalb der traditionellen äh arbitablen Zonen, ja undsprechen jetzt eigentlich mit der Community von einer Erweiterung der Abi-Tabletion, weil wir äh flüssiges Wasser haben können, viel weiter weg.
Tim Pritlove
Auch unter anderen Bedingungen eben nicht durch die Sonne, sondern eben den Moment eben durch die chemische Zusammensetzung, plus Gravitation.
Nicolas Altobelli
Chemische Energie, Thermodynamik,Aber Wasser an sich ist extrem verbreitet ähm und äh hat keinen Grund eigentlich äh wegzugehen, wenn wir im Ausland sind. Sollen System sinddabei bei der Erde, wo die Erde entstanden ist, dann waren die Temperaturen natürlich viel zu hoch und äh deswegen gibt's all diese Überlegungen, kam es von Kometen dann später äh oder hm,kommt es vom Kern, von von der von den Kristallen von den Meteoriten, von den von den Kontroten.
Tim Pritlove
Ähm er ist jetzt grade richtig verstanden habe und bei den Instrumenten ähm von Juice gibt's auch welche, die so Partikel einfangen können. Also wir reden jetzt hier wirklich von Röhrchen raushalten.Und dann in so einem kleinen Labor auch sofort untersuchen.
Nicolas Altobelli
Ja, das sind kleine fliegende Labore. Äh wir haben diese Massenspektrummeter an Bord. Das heißt, die Teichen werden angefangen, oder Atomenneutralen Atomen oder Elektronen. Ähm und oder,Staubteilchen. Die können auch da gefangen werden und die werden analysiert hier nach der Sorte natürlich. Also es gibt,Instrumente, die haben starke Magnetfelder, damit die Energie der der geladene Teilchen ähm analysiert werden kann,Ähm und das hilft äh zum Beispiel.Die um die Exosphäre der Dämonde zu ähm zu verstehen, ähm wenn,Die Oberfläche des Mondes ständig mit diesen hochenergetischen Partikel vom vom Jupiter von der eingeschlagen werden. Das verwittert natürlich die Oberfläche,setzt äh Wasser und äh sauerstofffrei. Äh und wir können dann gucken, ähm wenn wir vorbeifliegen bei 400 Kilometer Höhe zum Beispiel. Wir können diesediese Oberflächenmaterial einfach abfangen und äh vor Ort analysieren.
Tim Pritlove
Und wenn man jetzt feststellt, dass es auch diese Geysire äh gibt, zumindest selten in irgendeiner Form. Ich weiß nicht, wie hoch flogen die beim Enzelados, also was weiß man, wie weit das da rausgeschleudert wird. Dann kann's ja durchaus sein, dass sie sich Schuster auch eine Dusche abholt.
Nicolas Altobelli
Anhand der Oppelbeerwartungen wissen wir, dass die bis hundertfünfzig Kilometer äh Höhe. Äh sich erstrecken, ja?
Tim Pritlove
Mhm. Also im sichtbaren Bereich sozusagen und der Rest wird ja dann irgendwie auch noch.
Nicolas Altobelli
Ja, das wird verdünt und herumfliegen.
Tim Pritlove
Das heißt, man könnte dann in dem Fall im Idealfall quasi direkt vorbeifliegen und gucken, was da jetzt raus.
Nicolas Altobelli
Könnten da durchfliegen, genau so wie das gemacht hat bei die die ganze Planung der Territorie wurde gehindert, damit ähm die sind bei 50 Kilometer, glaube ich, von der Oberfläche geflogen,durch die Kaisers ähm und damals hateigentlich ein deutsches Instrument, äh dass Kosmik das eine Reise äh vom Max-Lon-Institut für ähm gernphysik in Heidelberg, die haben diese Staubzeichen gefangen und man hat damals gesehen, ähmdiese das das waren Eisteichen mit Silikattenmit Nanosilikaten drinnen, ja und ähm die konnten ganz viele ähm Sachen über die Eigenschaften der des Ozeans herleiten und haben sogar dazu beigetragen, dass man jetzt weiß, dass es eine geothermische Quelle am,am Boden von.Äh so was könnte man sich natürlich mit Juice auch vorstellen. Äh wir pflegen zwar beim vierhundert Kilometer, aber das könnte sich das das muss man noch,ähm überlegen natürlich.
Tim Pritlove
Woran man sich ja schon so ein bisschen gewöhnt hat, deswegen würde ich das ja fast erwarten, dass man eben auch so eine wunderschöne äh hochauflösende, dreidimensionale Kartografie am Ende äh erhält. Das wird Juice wahrscheinlich auf jeden Fall leisten können, ne? Sowohl.
Nicolas Altobelli
Ein DTM, wie man sagt.
Tim Pritlove
Den Jup Jupiter sicherlich nicht komplett, sondern äh aber vollständig. Kann denn.Kann in der Orbit um noch so angepasst werden, dass man auch wirklich über die Pole fliegen kann oder also sozusagen die Ausrichtung des Orbits noch ändern kann, um auch wirklich alle Bereiche abzudecken.
Nicolas Altobelli
Also die Orbits ist ähm Polar erstmal, ähm aber die wird die wird so ausgerichtet, ähm äh also die Monde dreht sich äh unter die Spacekraft, ja und das hilft natürlich bei der.
Tim Pritlove
Ah okay, also wie bei der Erdbeobachtung macht man einfach einen Polarohr,auch naheliegend gedacht.
Nicolas Altobelli
Das ist äh das einfach so, ja.
Tim Pritlove
So, dann gibt's also schön dreidimensionale Bilder.
Nicolas Altobelli
Ja absolut, also diese zum Beispiel ähm ähm also das hängt dann davon ab, wie viel,Attenmenge. Wir übertragen können, äh ob bestimmte wir suchen natürlich nach geologischen ähm,außergewöhnlichen Informationen. Ja, das ist ganz wichtig, dass man es gibt schon ähm sogenannte ja, wo man besondere Interesse hat, äh weil,Region, das sagen wir uns natürlich die Geologen, aber bestimmte Regeln sollten wirklich unter die Lupe genommen werden,Äh also ich kann in jetzt Ihnen jetzt nicht sagen, ob wir eher für eine vollständige Kartierung äh gehen oder ob wir bestimmte Zonen wirklich ähm.
Tim Pritlove
Höher auflösend.
Nicolas Altobelli
Dann schauen.
Tim Pritlove
Okay, das entscheidet sich, dann ist ja auch immer ein permanentes Abwägen äh.
Nicolas Altobelli
Permanent, ja, mit der Wissenschaft, mit der Gemeinschaft.
Tim Pritlove
Und das ist ja dann im Prinzip auch genau das, was äh so ein Mission-Manager dann wahrscheinlich auch äh primär leisten muss hier am äh Izak. Dieses Abwägen der Anforderungen, der Wissenschaft äh und der entsprechenden Anforderungen an die an die Missionssteuerung.
Nicolas Altobelli
So jeder hat seine Ziele und äh das muss man natürlich verstehen. Ähm wenn man als Mission Manager arbeiten will, ähmdie Safety äh des Space Crafts ist natürlich ganz wichtig und äh traditionell hat man immer soWissenschaftler, die wollen natürlich mehr ähm mit der Sonde machen und ähm die Ingenieure, die versuchen natürlich etwas konservativer zu sein und äh natürlich sind beide Standpunkte richtig und ähm da muss man,Sich entscheiden, je nachdem,welche Objektive man erreichen will. Ähm ich sehe das natürlich als als die schwierigste Arbeit. Ich stelle mir die ganze Mission vor wie ein Schiff, ja. Ähm,die ein Shift, wo man versurht, äh unerforschte gegen gegen äh ähm erforschen will.Und äh ja man muss natürlich gucken, dass alle zusammen mit arbeiten, dass wir die Ressourcen haben,dass wir die Konflikte lösen können und äh ich lege viel Wert drauf, dass man ähm sehr früh ähm das Ganze übt. Wir haben's äh also man sollte ganz früh die,die die die wahrscheinlichste Probleme äh lösen können, gucken, was auftreten kann und wie wir dann reagieren, ja, damit wir keine Zeit verlieren.
Tim Pritlove
Jetzt ist man ja mit so einem Projekt ganz schön verheiratet. Also das äh wird ja jetzt, wenn alles so nach Plan läuft,ist ja das äh erste Missionsende, glaube ich, so gegen zwanzig dreiunddreißig ähm angepeilt,Das ist ja dann meistens auch immer so der Punkt, wo man sagt, naja, bisschen Treibstoff haben wir ja noch und jetzt haben wir unsere Ziele erreicht und jetzt machen wir noch mal ein bisschen weiter, dann kannst du auch, was weiß ich, was da noch drin ist, vielleicht nochmal fünf Jahre länger gehen, ist das realistisch?
Nicolas Altobelli
Ich würde erstmal ja, zweimal zwei Jahre vielleicht, ja?
Tim Pritlove
Ja okay, gut, ne, also in der Größenordnung. So, das heißt, wir reden dann schon so über die nächsten 12, 13äh Jahre. Wie ist denn das, wenn wenn man sich so so lange auf so einen,ein Projekt einlässt und dass er dann eigentlich auch gar nicht mehr gehen lassen kann.
Nicolas Altobelli
Also das sind diese Missionen, die beschäftigen Generationen, ja? Das ist die Erforschung des äh Aus- und Sonnensystems. Ich war als Student bei Galileo,Bin ich etwas größer geworden und wurde ausgebildet und dann irgendwann jetzt habe ich das Glück, diese Mission für die nächste Generation zu ähm vorbereiten und ähm dann,zu operieren, ja,und natürlich werden, das ist diese Miktion ist für die nächste Generation der Wissenschaftler, die sich die Daten noch jahrelang anschauen werden. Ähm aber man muss wirklich das nicht als einziges Projekt sehen, sondern als eine es gibt eine Kontinuität, ja, vom 17. Jahrhundert sozusagen,ähm bis ja. Ja, aber das das Fashion der Generation von Wissenschaftler sich dann ablösen und äh,nacheinander an die Mädchen arbeiten, das ist ganz wichtig.
Tim Pritlove
Ja, super. Ich glaube, dann haben wir ähm schon den Kern dieser Mission ganz gut äh,Gibt's noch irgendetwas, was man vielleicht noch äh unbedingt erwähnen sollte, was diese Mission und ihre wissenschaftliche Bedeutung so betrifft?Zukünftige schon geplante andere Missionen, die schon darauf warten, hier äh,als Ansporn für für die nächste Missionsplanung zu nehmen.
Nicolas Altobelli
Ja ich hoffe das wird ein Schritt sein zu zu einer Landung irgendwann ähm auf einen von diesen Eismann, weil wirklich also ich möchte wirklich sehen ähm,Zu spät für mich ist, ähm dass wir vielleicht Bakterien oder,Lebensformen äh entdecken, äh selbst ganz einfachen Lebensformen, ja, damit wir wissen, dass wir nicht ganz alleine sind.
Tim Pritlove
Also ich meine so unwahrscheinlich ist das ja nicht. Ähm es ist ja nun schon mit der Mission gelungen, äh sogar auf dem Titan.Also dem Saturn Mond zu zu landen,also auch nicht sehr viel mehr als das. Man ist halt einfach runtergefallen und dann lag man da eine Weile kontrolliert und so mit schönen äh wirklich atemberaubenden äh Bildern und demnächst werden ja auch die Amerikaner äh eine hervorragende Mission mit Hubschrauber starten. Das,das das wird wirklich äh extrem spannend, überhaupt so das Fliegen ist ja jetzt äh the next big sing, habe ich so den Eindruck, funktioniert ja aufm Mars auch schon ganz wunderbar. Also es ist ja nicht äh vollkommen ähm,also ich meine, selbst wenn's Zukunftsmusik wäre, wenn die Zukunftsmusik irgendwo spielt dann in der Raumfahrt, aber man kann sich da schon ganz gut vorstellen, dass man so eine Landemission macht und im Gegensatz zum Jupiter, auf den man einfach gar nicht landen kann, ähm sind natürlich diese Eismonde,Wunderbar, aber mit was müsste man denn da eigentlich landen und welche Vorteile hätte man davon, wenn man das tun würde?
Nicolas Altobelli
Ja äh ich glaube, der größte Vorteil wäre, dass man unter die Einschicht äh bohren könnte wahrscheinlich, aber das ist wahrscheinlich das ist Zukunftsmusik der ausführlichen Gründen.
Tim Pritlove
Sind wir auch schon bei der.
Nicolas Altobelli
Erstmal ja wir sollten wirklich gewährleisten, dass wir das nicht beschmutzen oder ja verschmutzen,Äh und zweitens, dass es äh energetisch gesehen sehr schwierig zu landen. Ja? Ähm von der Navigation her. Das wurde,studiert, aber das ist nicht nur einfach, ja, äh und ritens natürlich die die sind die Strahlungen ähm die Strahlungmenge äh am Jupiter ist wirklich, wirklich hoch, ja und äh das grillt einfach äh die ganze Elektronik.Deswegen sind die Mizonen, die wir jetzt haben, wir bleiben nicht zu wir versuchen ähm insgesamt,nicht zu lange im inneren Jupitersystem zu bleiben. Wir machen unsere Vorbeiflüge und wir sind raus, ja? Und ähm unser Orbit sind so konzipiert, dass insgesamt die Dosis, die wir dann äh erhalten, äh nicht eine bestimmte Grenze übersteigt. Und das ist bei,bei der Nass Ambition Kleeper zum Beispiel so, dass die nur diese Vorbeiflüge äh machen und dann fliegen raus.Und die akkumulieren diese Radiationsdosis ähm nur bei bestimmten Zeiten und die passen auch auf, dass die ja nicht zu viel kriegen. Aber das ist wirklich die,größte glaube ich Herausforderungen von solchen Mietionen ähm ist, dass man.Gut genug abgeschirmt ist, um bei bei Jupiter äh bei bei Juice ist das so, dass wir die ganze Elektronik der Instrumente eigentlich in so einem Bunker äh an Bord haben, ja, mit äh Beschichtung und äh mit ähm,Schutz gegen die Strahlung haben. Das macht die Masse des Bischofs auch nicht geringer, ja? Ähm,für solche Zukunft Musik Landungen auf äh auf Europa zum Beispiel, dass wir natürlich äh eine große Herausforderung.
Tim Pritlove
Schon eher Europa als Becher wäre so der interessanteste zum Landen.
Nicolas Altobelli
Sagen, je nachdem, was findet?
Tim Pritlove
Okay, das wird sich dann sozusagen alles noch herausstellen.Vielen Dank, vielen Dank für die Ausführung zur Mission. Das war sehr interessant und ähm ich hoffe auch, dass ich hier in der künftigen Sendung mir immer das Jupiter-System insgesamt auch nochmal genauer äh erklären lassen äh kann, aber.Zumindest was bei der Isar äh nächstes Jahr dann hoffentlich ansteht. Alles Gute für den Start auf jeden Fall. Ja und vielen Dank fürs Zuhören hier bei Raumzeit.Weiter und bis dahin sage ich tschüss und.

Shownotes

RZ094 Weltraumbeobachtung und die Wissenschaft

Planung und Koordination von Weltraumbeobachtungsmissionen beim Europäischen Astronomiezentrum (ESAC)

Zahlreiche Missionen der ESA sind der umfassenden astronomischen Beobachtung des Weltalls gewidmet. Gerade hat die Mission Gaia alle Erwartungen übererfüllt und einige neue Missionen wurden gerade gestartet oder stehen schon in den Startlöchern. Doch wie läuft so eine Mission im Vorfeld ab und wie gelingt die Zusammenarbeit mit der wissenschaftlichen Community? Wir sprechen über diese Beobachtungsmissionen, das Wissenschaftsprogramm der ESA und auch die Zukunft der bodengestützen Astronomie durch das Extremely Large Telescope in Chile.

Dauer:
Aufnahme:

Markus Kissler-Patig
Markus Kissler-Patig

Wir sprechen mit Markus Kissler-Patig, Head of Science and Operations beim Europäischen Weltraumastronomiezentrum (ESAC) bei Madrid, Spanien. Er hat im Laufe seiner Karriere an zahlreichen Wirkungsstätten an Weltraumbeobachtungssystemen und -missionen teilgenommen und maßgeblich die Entwicklung des Extremely Large Telescope in Chile vorangetrieben.


Für diese Episode von Raumzeit liegt auch ein vollständiges Transkript mit Zeitmarken und Sprecheridentifikation vor.

Bitte beachten: das Transkript wurde automatisiert erzeugt und wurde nicht nachträglich gegengelesen oder korrigiert. Dieser Prozess ist nicht sonderlich genau und das Ergebnis enthält daher mit Sicherheit eine Reihe von Fehlern. Im Zweifel gilt immer das in der Sendung aufgezeichnete gesprochene Wort. Formate: HTML, WEBVTT.


Transkript
Tim Pritlove
Hallo und herzlichkommen zu Raumzeit, dem Podcast über Raumfahrt und andere kosmische Angelegenheiten. Mein Name ist Tim Pritlove und ich begrüße alle zur 94. Ausgabe hier in dieser,und schon im letzten Gespräch habe ich ja erzählt, ich bin äh nach Madrid gefahren und da sitze ich jetzt immer noch und nutze die Gelegenheit auch gleich noch für ein zweites, interessantes Gespräch, was in gewisser Hinsicht auch an das letzte anknüpft, nicht, äh weil wir über das James Web Teleskop weitere äh Faktenbringen möchten, dem ist, glaube ich, ausreichend Rechnung getragen. Nein, jetzt soll's auch ein wenig umdie ISAG selber gehen und ähmwas sie hier überhaupt so äh gemacht und getan wird und noch sehr viel konkreter, wie man all diese ganzen Missionen plant und baut,besondere im Hinblick auf Teleskope, die im All durch die Gegend schweben, aber auch die Teleskope, die auf der Erde bleiben.Und dazu begrüße ich meinen Gesprächspartner heute nämlich Markus Kessler Pathig, hallo. Herzlich willkommen bei Raumzeit. Markus, ja, du bist hier ähm.Head of Science.
Markus Kissler-Patig
Head of Science Operations.
Tim Pritlove
Operations. Das klingt nach einer ganzen Mengen Arbeit.
Markus Kissler-Patig
Das ist ein Haufen Arbeit. Okay.
Tim Pritlove
Und das machst du hier seit zwei Jahren oder so.
Markus Kissler-Patig
Fast drei mittlerweile genau und nicht nur hier also bei der Isar sondern die Gruppe spannt eben auch andere Standorte der Isar Baltimore und auch in Holland.
Tim Pritlove
Mhm. Vielleicht mal erst mal zu dir, wie ähm bist du denn überhaupt zur Raumfahrt gekommen oder überhaupt zur Wissenschaft gekommen? Was war da die Motivation, wann fing das an?
Markus Kissler-Patig
Das äh von der ganzen Weile, also in den ähm äh Anfang der Ende der Achtziger habe ich angefangen, Physik zu studierenund äh habe mich erst für Teilchenphysik interessiert, äh bin über Nutrinus dann zur Astronomie gekommen, habe äh promovierten Gastronomie.Und dann eigentlich eine klassische Wissenschaftlerausbildung gemacht äh in den USA, äh viel Forschung. Ähm habe mich erst für eine akademische Laufbahn interessiert, aber bin davon schnell abgekommen.Mitte 90er Jahre für Observatorien gearbeitet. Äh erst für die äh für die, für das European Tree, also für bodengebundene Teleskopehab da angefangen Instrumentierung zu bauen und über die Instrumentierung kam ich dann so langsam rein in in Betrieb und von Großdeskopen.Hab dann lange Instrumentierung gebaut für Teleskope, hab dann umgesattelt auf Großprojekte, was der wissenschaftliche Leiter für das ILT für das European ExtremiskopeBei der EsO und ähm habe das dann mitentwickelt. Bin dann äh noch weiter gegangen, habe dann äh zweitausendzwölf.In die USA zurückgekehrt ähm und nach Hawaii gezogen für fünf Jahre, wo ich Direktor war von.Dem International Germany Observaty, das sind großzügige Hawaii und in Chile, die ich da betrieben habe.Und äh kam dann zurück zur Jesus später 2017 als stellvertretender Direktor für Wissenschaftwurde von da von abgeworben für die also für jetzt Weltraum Teleskope und bin seit 2019 eben in Madrid und hier für die Wissenschaft und im Betrieb von den Weltraum Teleskopen zuständig.
Tim Pritlove
Okay, gut rumgekommen, würde ich sagen.
Markus Kissler-Patig
Ja, ein paar Stationen und und viel dabei gelernt und ja, interessante Bögen geschlagen.
Tim Pritlove
Mhm. War denn das so von vorneherein klar, so eine wissenschaftliche Karriere? War das schon immer.
Markus Kissler-Patig
Ich hab mich immer für für Forschung interessiert, ich glaube auch wenn man viele Forscher fragt die sind auch immer kreativ also ich hab im Studium mein Geld verdient indem ich Illustrator war also hab für 'ne Werbeagentur gearbeitet und illustriert.Und ich kenne viele, die Musiker sind oder sonst was, also sie eine kreative Seite haben und wenn sie dann eben noch sich für Wissenschaft interessieren, laden sie auf den in Grundlagenforschung, was äh sehrwas so ganz anders ist als die Ingenieure, mit denen ich sehr viel zu tun hatte, das ist, ich sag mal, das sind die die Konservativen, Wissenschaftler und die äh,die Forscher sind, die die freigeistigen Wissenschaftler äh und ich war eben eher einer der freigeistigen Wissenschaftler, ich könnte michso rigoros arbeiten wie ein Ingenieur und und ich glaube auch umgekehrt äh klappt das oft nicht gut. Aber so war es einfach ganz nett. Ähm ich habe mich für Wissenschaft interessiert, hatte dasäh in der Gastronomie gibt's eben wenig Stellen. Ähm es ist eine eine schwere Karriere, wenn man da die ersten zehn Jahre äh auf befristeten Stellen sitzt und äh und insbesondere, wenn man Familie hat,vier Kinder auch äh immer sich wieder die Frage stellt, äh wie lange kann ich's noch auf diesem Job ernähren, wann muss ich umsatteln? Aber mir hat's eigentlich ganz gut geklappt. Ich habe mich äh ich habeimmer das Glück gehabt, spannende Sachen zu machen. Habe auch immer ähm mich für Lehre interessiert. Ich hatte auch ursprünglich mal auch ein bisschen auf Lehramt studiert und äh habe immergelehrt, seit 205 auch an der LEMU in München, wo ich dann später habe die Tiert habe und immer dort auch noch äh jetzt Privatdozent bin. Ähm.
Tim Pritlove
Astrobiologie.
Markus Kissler-Patig
Also im Moment unterrichte ich Astrobiologie ursprünglich Astrophysik aber Astrologie Biologie hatte sich ergeben weil ich eben durch das Forschung der Exo-Planeten dann auch lernen wollte und.
Tim Pritlove
So ergibt eins das andere.
Markus Kissler-Patig
Genau. Also es äh fing da alles zusammen. Ich habe auch immer wieder Gelegenheiten genutzt, äh andere Sachen zu tun, so bin ich eben viel rumgekommen und habe mich nie irgendwie äh gefürchtet, irgendwie mal was was Neueres zu lernen oder anzufangen und ähm.Zum anderen.
Tim Pritlove
Mhm,Wenn ich das äh richtig mitbekommen habe, ähm war eigentlich so der Auslöser, ich meine, dass es sich dann so auf Teleskope äh eingeschwungen hat, hatte glaube ich damit zu tun, dass schon im Studium eine Beschäftigung mit Hubbel angesagt war, oder?
Markus Kissler-Patig
Im Studium hatte ich schon was mit gemacht, aber da war das, glaube ich, vielleicht noch ein wirklich äh da habe ich mich nie so richtig technisch in im technischen Bereichen gesehen. Und das kam eigentlich mit dem.Mitmeinem zweiten Postdog, also dem beim ersten in Kalifornien, habe für die äh University of California Trees gearbeitet. Äh da war's im Zusammenhang mit Hubbel, da war es in Zusammen mit den ersten Großteleskopen in den USA, mit demund dass die Europäer dann Großteileskope gebaut haben, das wäre äh haben sie nach jungen Europäern gesucht, die eben Erfahrungen damit hatten.Da wurde ich eben von der, vom als erst mal eingestellt.Da habe ich angefangen, so ein bisschen mich für technische Sachen zu interessieren, Instrumentierungen, auch gesehen, dass man äh eine Schnittstelle braucht zwischen denrein Akademikern, die wirklich diese Instrumentierung benutzen und den Ingenieuren, die sie bauen und man brauchte da eben eine Schnittstelle, die eben beide Welten versteht oder sich für beide interessiert.Da bin ich dann drin gelandet und hab das angefangen für Instrumentierung für das 34 Instrumente betreutund äh eben versucht immer zu erklären, den Ingenieuren, was jetzt überhaupt die Wissenschaft klar machen wollen mit dieser mit diesem Instrument, mit diesem Teleskop.Und wie man das am besten technisch umsetzt und äh das hat mir Spaß gemacht.Und ähm ich hab's natürlich dann auch ganz gut gemacht, weil man mich dann eben auf dieses große Teleskop angesetzt hat, auf das äh wo ich dann damals äh dann eben auch dieselbe Rolle hatte eben.Die Definition überhaupt von dem von dem und dann wie man diese auf englisch oder die wissenschaftlichen.Ziele eben den Ingenieuren erklärt und daraus eben äh äh.Und technische äh Anforderungen eben äh entwickelt.
Tim Pritlove
Ist eigentlich eine super spannende Schnittstelle, ne? Diese diese beiden Welten äh mehr oder weniger gleichzeitig abzudecken ohne oder mit beiden Sachen äh unmittelbar was zu tun zu haben.
Markus Kissler-Patig
Ja, also ich fand's auch immer äh ich habe sehr, sehr viel gelernt von beiden Seiten, also aus der Wissenschaft kam ich ja, das konnte ich eben sehr gut nachvollziehenwas ich lernen musste ist wirklich mit Ingenieuren zu arbeiten und was die Anforderungen sind wenn man überhaupt also das ILT ist 'n Milliardenprojekt, das ist 'n unglaublich komplexes System mit vielen Untersystemenund ähm wie man da überhaupt äh wissenschaftliche Anforderungen übersetzt in in technische Anforderungen.Wo die Grenzen sind, wo man verhandeln kann, wie Ingenieure ticken, wie man in hilft, weil letztendlich möchte man ihnen ja helfen, das Beste zu bauen.Und äh das äh hat mich schon immer fasziniert und ähm dann ist mir natürlich auch sehr schnell in in Projektleitung und so bin ich eben auch in diesem Managementrollen reingerutscht.Aber das mich hat's eben fasziniert wirklich das umzusetzen dieses wir haben wissenschaftliche Ideen ich forsche auch noch gerne ich hab auch noch Studenten aber wie ermöglicht es.Ist es anderen Leuten äh wirklich zu forschen und mit mit Spitzen äh Apparatur, mit Spitzenteleskopenähm und das äh fand ich toll, hat Spaß gemacht, wenn was Spaß macht, dann ist man auch meistens erfolgreich drin und und das hat gut geklappt.
Tim Pritlove
Mhm. Dann kommen wir doch vielleicht mal kurz auf die Rolle, die jetzt dasals Standort auch konkret spielt, weil ähm es scheint mir bisher am richtigen Ort, weil er im Prinzip genau diese Schnittstelle äh an dieser Stelle ja auch äh voll zum Tragen kommt. Also das Esack ähm kümmert sich ja auf der einen Seite.Um die Wissenschaftler, also hat genau diese Anbindung an die ganzen äh Wissenschaftler weltweit verteilt, die eben.Nach Daten hungern. Die Anforderungen haben ähm auf der einen Seite, aber es ist ja auch, aktiv beim.Planung, bei der Entwicklung der äh Instrumente und der gesamten Systeme, sowohl bei den Space Missions als auch bei den Bodentelesgruppen mit dabei, richtig?
Markus Kissler-Patig
Ja, genau. Also ähm vielleicht um um kurz auszuholen, was die EZAG ist, also ist für European Stronname Center. Es ist eins von äh acht Standorten von der ESAF, also von der European Space Agency in in Europaund äh ist aufgeteilt in in viele Programme. Ähm aber der der das Kernprogramm oder das äh also das Programm mit dem Esa gegründet worden ist, ist das WissenschaftsprogrammUnd das ist eben hier am Esak angesiedelt. Ähm und wir kümmern uns also praktisch alles äh alle Wissenschaftsmissionen, die nach oben gucken.Ich sage immer, dann gibt's noch welche, die nach unten gucken, das sind die Erdbeobachtungen, die sitzen bei uns in Italien. Äh wir haben ein riesen technisches Zentrum in Holland, wir haben Astronauten in in Deutschland.Wir haben äh, was ich mir das äh und unser Houston nenne, das ist in Darmstadt, in dem Fall, wo man die Sathlettenkontrolle macht.Aber die Wissenschaftsmission, die werden eben äh hier im äh Direktorat für Wissenschaften definiert und äh und gebaut und betrieben.Und Esak ist eben ähm hier die der Standort für für Wissenschaftsmission.Und ähm wir das Direktorat ist in in drei Teile äh gegliedert. Ähm.Ein Teil macht technische Entwicklungsarbeit und guckt, was für Technologien nötig sind für die späteren Missionen.Der zweite Teil baut wirklich die, arbeitet mit der Industrie zusammen und baut wirklich die Mission. Und der dritte Teil, das ist der Teil, den ich leite.Spannt den Bogen. Also wir haben die Wissenschaftler da, die Wissenschaftler, die eben diese Ideen haben, was für Mission kommt zu also als nächstes dran, was sind die Anforderungen und die dann eben praktisch,diese Arbeit machen, diese Schnittstelle sind äh zwischen der wissenschaftlichen Community und unseren Ingenieuren und eben da denen erklären, äh was jetzt als nächstes kommt.Und ähm ja, wir sind dann eben betreuen maßgeblich eben diese Entwicklung, also die ähm erstmal die die Selektion und dann die Entwicklung dieser äh Mission.Das Lustiges dran, dass wir dann alle Fehler dann selber ausbaden müssen, weil wir auch in diesem in meinem Department eben auch den Betrieb, den wissenschaftlichen Betrieb der Mission äh habenso dass wir nachher die Mission betreiben müssen, die wir selber definiert haben und die Android für uns gebaut haben.
Tim Pritlove
Also mit anderen Worten, man wird es auch nie los.
Markus Kissler-Patig
Man wird's nie los. Also und äh und das andere, was wir hier bei der haben, ähm ist ein äh ist das Archiv, das weltweit offen ist. Äh wir haben hier Daten von allen Missionen, die wir jeweils geflogen sind. Wir haben äh viele.Spiegeln viele Daten von NASA-Missionen zum Beispiel, der auch äh die auch hier untergebracht sind. Ähm wir haben Daten von äh unseren Astronauten noch hier liegen und so, also wir haben auch ein riesiges Archiv, äh das wir hier betreiben.Es gibt ein zweites Archiv in Italien auch für die Eheseite, für die Erdbeobachtung, aber das große äh Wissenschaftsgastronomiebetrieb äh Archiv, das äh das ist hier auch auf diesem Standort.
Tim Pritlove
Das heißt, hier ist auch konkret ein Data-Center, wo das vorgehalten wird.
Markus Kissler-Patig
Ja genau, hier ist ein großes Starter-Center. Äh am anderen Ende vom Campus, wo wir gerade sitzen ähm und da wird auch alles gespeichert äh betrieben.Viel viel Arbeit dahinter auch, dass man optimal die Daten der der Mission ausnutzen kann, dass man wenn manDaten von einer Mission sucht oder bearbeitet man direkt sieht wie die anderen Missionen vielleicht da was mit auch beobachtet haben oder ähnliche Objekte oder wie die verknüpft sind die Daten, so dass man wirklichnicht nur eine Mission, Daten von einer Mission auswerten kann, sondern.Eben äh das komplette, die komplette flotte der Esel benutzen kann für seine Wissenschaft, äh dass man das eben äh erleichtert, äh das zu tun.
Tim Pritlove
Also auch der Geier Katalog.
Markus Kissler-Patig
Geierkatalog ist hier. Der wurde hier auch mit äh also ähm viele dieser Missionen muss man sagen, sind zusammen mit der wissenschaftlichen Community äh geplant und entwickelt.In der Regel ist es so, dass äh wir eine eine Dienstleistung sind, also wir versuchen für die Wissenschaftler in Europa und und weltweit zu arbeiten und ähm was die ESA gut kann, ist Satelliten bauen.Sozusagen, was wir auch oft als Plattform bezeichnen. Also es es fliegt äh es kreist um die Erde oder es fliegt irgendwo ins SonnensystemUnd äh was äh wo wir versuchen mit den Wissenschaftlern in äh an den Instituten quer durch Europa zu arbeiten, ist um die Instrumentierung an Bord des Satellitens zu entwickeln.Wenn man wir haben so drei große Bereiche der Wissenschaft, wir haben die Astronomie, die sind eben sehr vergleichbar mit Boden gebundenen Teleskopen,da also von dem, was wir beobachten, wie wir die die betreiben. Dann haben wir planetarische Missionen, die sind etwas anders, weil da fliegen wir wirklich durch das Sonnensystem und versuchen den Planeten zu erreichen, den zu umkreisen oder zu landen. Und äh und dort Forschung zu machen.Und der dritte Bereich, den wir haben, ist äh Physik, also Sonnenphysik.Und da auch fliegen wir in der Regel in Richtung Sonne, je nach nah oder weit, je nachdem was wir was wir brauchen, was wir beobachten müssen ähm und äh all diese Bereiche eben äh sind hier abgedeckt.Und je nachdem, was es für eine Mission ist, haben die verschiedene Anforderungen, ob das jetzt dann Teleskop an Bord ist, äh für die Astronomiemission dann oft in verschiedenen Wellenlängen Bereichen ist äh von von.Kurzwilligen, also oder äh hart Energie äh Röntgenstrahlen bis dann über sichtbares Licht zu Infrarotstrahlung.Das sparen wir so in der Gastronomie ab. An Bord eines äh also für Planetarische Mission haben wir an Bord dann oftzehn 12 Instrumente, äh die ganz verschieden sind, welche, die eben sich den Planeten von von weiter angucken, welche, die einfach nur die Umgebung des Satellitens messen, wenn wir durchs Magnetfeld fliegen, um da die Magnetfelder zu messen der Planeten oderTeilchenströme oder Strahlung.Ähm und dann wiederum die ähm Helio Mission, also die die äh Heliophysemissionen, die sind ähm da transportieren wir auch oft ähm,zehn Instrumente an Bord eines Satelliten, um sowohl die Umgebung zu messen als auch zur Sonne hinzugucken und da Messung auf der Sonnenoberfläche zu machen.
Tim Pritlove
Ja, die Instrumente sind ja so ein bisschen das Salz in der Suppe. Ähm wird oft übersehen.Auch äh erstmal äh lernen, dass man's nicht immer unbedingt so an den Missionszielen selber, also an den.Geographischen Missionszielen äh allein festmachen kann, sondern dass sich die Mission eben stark darunter äh darin unterscheiden.Wie sie irgendwo hingucken und ähm welche Daten letzten Endes aufgenommen werden und das jaoft auch Missionen scheinbar ähm alte Missionen wiederholen, aber sich vor allem dann dadurch unterscheiden, dass äh entweder ganz andere Daten aufnehmen oder zumindest das, wasfrüher schon mal aufgenommen wurde, einfach sehr viel besser aufnehmen können, wie man das jetzt zum Beispiel bei dem Geier äh Katalog ja äh gesehen hat, der Sternkatalog, ich hatte das hier inRaum zahlt 76 mit Stefan Jordan, schon mal ausführlich äh besprochen, was da alles bei rausgekommen ist. Und das ist ja auch, glaube ich, eine der erfolgreicheren Missionen der äh Isar in der letzten Zeit, wenn ich.Geradezu ein eine ja ein Spitzen, eine Spitzenmission.
Markus Kissler-Patig
Hat äh in den letzten zwei Jahren alle Rekorde geschlagen. Also ähm das war was, was mich persönlich überrascht hat, weil ich dachte, dass äh das Hubbel Weltraum Teleskop äh.Nie äh übertroffen werden könnte. In ähm aber wenn man jetzt eine eine Metrik nimmt, wie viele.Wissenschaftliche Veröffentlichungen pro Jahr äh mit einem Teleskop passieren, hat sich irgendwann mal Hubbel auf etwa 1000 Veröffentlichungen pro Jahr hochgeschraubt.Habe das natürlich 30 Jahre alt und über 30 Jahre alt jetzt und und wird nie eingeholt werden, dass es Gesamtvolumen an Veröffentlichungen angeht. Aber in den letzten Jahren ähm als der Geier ähm äh KatalogDie zweite Edition rauskam und jetzt eben die die frühe äh dritte Edition. Da ähm ist Gaia auf fünfzehn, 16hundert Publikationen pro Jahr, also anderthalbmal so viel wie ähm wie Hubbel gekommen. Äh undum das einzuordnen. Die meisten Missionensind irgendwo zwischen 100 und 300 Publikationen pro Jahr, da will wir das schaffen, sind wir eben sehr froh und finden, das war schon eine sehr erfolgreiche Mission. Viele äh Wissenschaftler, die eben ein Interesse daran haben, die sich dran beteiligen, die damit was Interessantes publizieren,Habe mit tausend Publikationen pro Jahr dachten wir wären nie einholbar und und hat jetzt anderthalb Mal so viel wie Hubbel und und fünfmal so viel wie eine erfolgreiche Mission und und zehn Mal oder 15 Mal so viel wieunsere Standardmission sozusagen. Und das war ähm das war ein unerwarteter, enormer Erfolg.
Tim Pritlove
Gut, ich meine, es ist ja auch eine totale Universal-Mission. Ich meine, äh wer vielleicht die alte Folge noch nicht gehört hat oder noch nicht so genau weiß, wovon wir sprechen, Geier ist ja eine Mission, die einfach ja.Den Stern quasi den neuen Sternkatalog äh neu erfasst hat, also sprich unser gesamtes astronomisches Wissen darüber, wo befinden sich welche Objekte, woraus sind sie zusammengesetzt, wie schnell fliegen sie von A nach B,zu was gehören sie überhaupt? Auch diese Langzeitbeobachtung über mehrere Jahre, die ja quasi so 'n.Noch sehr viel dreidimensionaleres Modell äh erstellt hat, mit sehr viel mehr Rahmendaten als bisher Vorlagen und auch alles sehr viel noch äh sehr viel genauer noch erfasst hat, als es bisher möglich war. Das ist natürlich auch ein gefundenes Fressen und ich denke, dass aber auch die die Strategiewie diese Daten veröffentlicht wurden, doch eine ganze Menge dazu beigetragen hat. Also es ist ja alles sofort allen bereitgestellt worden.
Markus Kissler-Patig
Ja genau, also es ist.
Tim Pritlove
Der erwartete Effekt oder ähm.
Markus Kissler-Patig
Hoffnung, aber ich glaube nicht, dass sich die das jemand es äh je geträumt hätte, dass dass es so erfolgreich wird, äh weil die klassischen Gastronomie-Missionen, äh die werden betrieben wie Bodengebunden,da wurde es mehr oder weniger definiert von einem, von einem Jahrhundert, als es diese großen Teleskope gab, aufm aufm Boden, ähm dass die Wissenschaftler eben.Umbenutzen und jeder Wissenschaftler schlägt vor, was er da tun möchte, wenn es viel Druck auf dem Teleskop gibt, dann äh gibt es ein Prozess, also wo die Community eben entscheidet, was äh erfolgreiche Beobachtungen werden unddie bekommen dann Zeit. In der Regel beobachten die Wissenschaftler dann für sich selber.Wir haben mittlerweile Archive, die Daten werden dann auch meistens nach einem Jahr öffentlich gemacht, aber sie werden hauptsächlich von einem Benutzer äh benutzt. Ähm und ähm.
Tim Pritlove
Benutzer, der sozusagen auch definiert hat, wo wo schaut man überhaupt hin so? Aber das war ja bei Geier eh klar, wo man hinschaut, nämlich man schaut ja überall hin.
Markus Kissler-Patig
Genau und Geier, wo ist eine sogenannte eine Durchmusterungsmission. Das heißt, Geier äh ist ein Teleskop, das äh ähm sich auf um die eigene Achse dreht und eben äh also,äh Himmelsbahnen abtastet und da eben die Sterne vermisst. Äh.Und wieder und wieder und wieder, also um und zwar haben wir dann die die hellsten Sterne, das sind die Sterne unserer Milchstraßen und da hat zwei Milliarden von erfasst von in der Milchstraße gibt's.
Tim Pritlove
Vielleicht 200 Milliarden. Man weiß man's mittlerweile genauer.
Markus Kissler-Patig
Ich glaube weniger ist das also es sind äh zehn auch zehn Sonnenmassen mehr oder weniger, unsere Galaxie und und die meisten Sterne sind halt äh weniger massiver als unsere Sonder. Also,ÄhWünscht mir die Zahl genau, aber ich würde abschätzen zwischen 10 und 50 Milliarden Sterne, aber zwei Milliarden Sterne ist schon ein ein Großteil der Sterne unserer Milchstraße und die sind eben auch ähmhomogen verteilt über den Himmel, das heißt man kann sehr sehr gut an wenn man diese Sterne vermisst,und das hat eben unglaublich präzise gemacht, nicht nur die Position, sondern auch eben wie sich diese Sterne in mit der Zeit verschieben, wie sich bewegen, in welche Richtung sie fliegendiese Daten als großer Katalog veröffentlicht worden sind,unglaublich viele Projekte ansetzen, um die Milchstraße zu verstehen, um die Mischhas zu verstehen. Man kann eben durch diese äh genauen äh ähm Positionen noch Paralaxen bestimmt, das heißt Entfernungen zu sternen, die man ebenmit dem bloßen Auge kann man ja nicht erfassen, wie weit oder ein Stern ist, aber daher ermöglicht eben diese.Entfernungen der Sterne zu bestimmen, wenn man eine Entfernung hat, eine genaue, kann man anfangen,eine äh sichtbare Helligkeit äh in eine absolute Helligkeit umzurechnen. Das heißt, man kann anfangen wirklich.Die physikalischen Eigenschaften dieser Sterne sehr, sehr genau zu bestimmen. Und dann hat das öfter seine Fenster auf diese ganze stillere Astrophysik äh dann die Leute an, besser die Größen der Sterne, die Temperaturen der Sterne, die Schwerkälte, sie ähm äh Oberflächen ähm.Schwerkraft der Stelle zu verstehen, kann man sehr, sehr viel Sternphysik machen. Andererseits kann man eben diese Struktur der Milchstraße sehr gut verstehen oder viel, viel besser verstehen als früher, wie sich die Milchstraßewas für Komponenten sie hat, Scheiben, inneren Kern, ein wie sich zueinander verschaltendann die komplexe Struktur der Milchstraße, alles was auf die Milchstraße,draufgefallen ist, wir haben eben äh sehr viele Nachbargalaxien und viele von denen haben eben mit der äh Wann mit der Milchstraße in einer Wechselwirkung und wir können wir fangen an, eben diese ganzen Wechselwirkungen viel besser zu verstehen und nachvollziehen zu könnenDann gab's sehr seltene Objekte, von denen man eben vielleicht,Weiße Zwerge zum Beispiel sind, sind eher selten. Äh und wenn man dann zwei Milliarden Sterne erfasst, hat man plötzlich einen riesigen Katalog, statt eben eine eine Handvoll von äh diesen speziellen Objekten zu haben, hat einen Punch hunderte von diesen speziellen Objekten und kann eben diese spezielle KategorieZwerge als Beispiel viel besser studieren und verstehen als früher. Und so kam es eben, dass Gaya,dadurch dass es eben 'ne Durchmusterung war, dass man eben nicht das diese Daten unterteilt hat, sondern die wirklich aus ganzen Katalog veröffentlicht hat und auch sofort.Wissenschaftlern weltweit zugänglich gemacht hat, hat man da eben unglaublich viel Forschung in ganz verschiedenen Gebieten ermöglicht. Und das hat die Mission, glaube ich, so erfolgreich gemacht.
Tim Pritlove
Und wird das dazu führen, dass es in Zukunft häufiger getan werden wird oder vielleicht so der neue Standard wird?
Markus Kissler-Patig
Es wird äh glaube ichschon zum neuen Standard, also die die NASA hat schon beschlossen, dass die ähnlichen Missionen, die es in Zukunft die Nase betreiben wird, eben auch die selbe äh Daten äh,haben soll. Äh und die Daten sofort veröffentlicht werden, veröffentlicht werden sollen und auch vorbereitet werden sollen, so dass die Wissenschaftler sie benutztsofort benutzen können und nicht selber erstmal ähm diese.
Tim Pritlove
Rohdaten filtern da filtern und so. Mhm.
Markus Kissler-Patig
Ähm und wir haben auch einige Missionen, die noch äh kommen und äh wo wir eben ähnlich vorgehen wollen. Wir haben eine ist eine, die äh nächstes oder spätestens übernächstes Jahr äh starten wird, die äh auch eine Art Durchmusterung machen wirdaber nicht um,nah, also nahe und so Milchstraße zu studieren, sondern guckt eben in weite Ferne und versucht eben die, die Struktur des kompletten Universums zu verstehen. Etwa auf der selben Grundlage, große Durchmusterung und dann diese Daten an viele, viele Wissenschaftler schon verarbeitet geben.Damit die eben Beschleunigungsuniversums, dunkle Materie, dunkle Energie und diese Phänomene eben damit studieren kann.Die anderen Mission, die ähnliches äh uns so einig sein wird, ist die Mission. Da wollen wir eine große Durchmusterung machen und äh möglichst alle Exoplaneten oder Planetensysteme um uns rum erfassen und äh und äh auchKataloge erstellen, die vorbereiten für die Wissenschaftler und dann allen Wissenschaftlern sehr schnell Zugang zu geben.Ist das, wo wir uns eben maximalen Durchbruch wissenschaftlicher.
Tim Pritlove
Bleiben wir doch nochmal ganz kurz bei Geya, aber aus einer anderen Perspektive heraus, nämlich dieser Perspektive der Arbeit, die wir jetzt äh eingangs schon beschrieben haben, die haben Isaak gemacht wird. Womit fängt sowas an?
Markus Kissler-Patig
Also die meisten Missionen undund das gleiche Prinzip gilt für für große Disco aufm aufm Boden. Fangen meistens mit äheiner Idee an, die in der Community oft äh einfach geboren wird, äh wo sich dann Leute zusammentun und sagen, Mensch, das wäre doch das nächste, größte Denken. Also mit dem damit könnten wir einen wissenschaftlichen Durch,äh erzielen. Ähm.Dann äh sind diese Missionen oft sehr teuer, äh ein paar hundert Millionen Euro bis zu einer Milliarde oder mehr äh oder ganz extrem, wie jetzt das äh Hubbel oder das neue Huble, James Webstays guckt, ist man bei zehn oder plus Milliarden.
Tim Pritlove
Wie lange dauert denn das, bis man überhaupt auf so einen Preis kommt? Ich meine, wenn ich mir jetzt vorstelle, dass so eine Gruppe der also erstmal muss ja sozusagen diese Idee.Klar, muss man erstmal haben, aber dann äh.Es besteht ja der Wunsch, alles Mögliche zu erforschen und ich denke mal, da sind sich die Wissenschaftler ja nicht von heute auf morgen einig, sondern irgendeiner Form muss ja erstmal so ein Konsens gebildet werden, so ja, das ist jetzt auch so ein Ziel, da stehen sehr viele dahinter und mehr als hinter anderen Zielen.
Markus Kissler-Patig
Genau und damit fängt eigentlich alles immer an, also dass wir praktisch in äh in regelmäßigen Abständen, das sind.Abstände von 1 bis manchmal 20 Jahre. Wir haben gerade jetzt einen solchen Prozess hinter uns. Die äh Community befragen und ähm.Praktisch alle einladen, äh zu einem Konsens zu kommen, was die großen wissenschaftlichen Themen sind, also überhaupt erstmal Themen, nicht unbedingt wie man sie in eine Mission umsetzt, sondern Themen.
Tim Pritlove
Wo findet das statt auf Konferenzen oder gibt's da elektronische Kommunikationen? Was.
Markus Kissler-Patig
Es findet auf Konferenzen statt, oft auf auf wirklich.Zielgerichtete Konferenzen, also die, das, was die Esel jetzt gerade gemacht hat, das äh haben wir voyage twenty-fifty genannt, also ähm um praktisch die Mission zu definieren, die in den 2040ern, 2050er Jahren.Fliegen werden. Das heißt, wir planen praktisch eine Generation in die Zukunft. Und so haben es auch einige Generationen vor uns, die Leute gemacht, für die Mission, die wir heute fliegen,Ähm wir rufen dann alle auf, äh sich äh äh oder freiwillig zu melden, um äh mit zu machen. Und bilden dann ein ziemlich großes Komitee äh mit.Viel Expertise mit, also der Expertise der gesamten Community, äh die dann, weil wiederum Konferenzen organisieren, wo dann allewirklich erscheinen können und jeder kann auch einfach einen einen was wir nennen, also einen Vorschlagniederschreiben und das auch einschicken. Und dieses, äh, diese Gruppe, die, der Freiwilligen, ähm, zwanzig Leute, dreißig Leutesetzt sich dann hin und arbeitet wirklich ein, zwei Jahre durch, um rauszufiltern, um um große Themen auszuarbeiten und so weiter und stellt sie dann vorund das ist dann eine Art Konsensbildung, wo wir dann wissen, gut diese Themen sind die uns wichtigen Themen für die nächsten zwei, drei Jahrzehnte.Ähm und die arbeiten wir dann so langsam ab.Äh zum Beispiel ähm ein Thema, das es jetzt rauskristallisiert hat, ist, dass wir gerne die Mode von riesen Planeten, ähm also vom Jupiter, vom Saturn erforschen würden.Weil wir uns da eben erhoffen, dass beim einigen von denen, die die zu einer Eiskruste haben, eben aber oft einen flüssigen Ozean unter der Oberfläche äh eventuell äh Zeichen von Leben oder äh Bausteine für Leben eben finden könnten.Das ist immer ein großes Thema. Ähm da wird's dann dazu in den nächsten ein, zwei Jahren eine Ausschreibung geben und äh sagen, gut, wir würden eine solche Mission fliegen.Ähm entwickelt man Konzepte. Was dann passiert in der Community ist, dass dann sich die Leute wirklich hinsetzen und äh sich überlegen.Wie würde so eine Mission aussehen? Zu welchem Mond möchte ich fliegen? Ist es ein Mond von mir bitte? Ist ein Mond vom Saturn? Welcher? Welche sind interessant? Das ist der Titan, es ist Enzelarus, es ist verschiedene Eigenschaften,ähm in der Regel gibt's dann verschiedene Vorschläge. Dann laden wir wieder die Community ein, äh das eben sich anzuschauen, also.Wir arbeiten sehr viel mit diesen Peer-Reviews, also mit ähm.
Tim Pritlove
Gegenseitigen Abprüfen von PayPal dann, mhm.
Markus Kissler-Patig
Genau und äh und eine Selbstevalubation der Community, die dann sagst, gut, nach reifem Überlegen denken wir, dass.Dass die Mission wird die ähm erfolgreichsten äh sein kann. Ähm und die,nehmen wir dann, also diese Studien führen wir dann oft parallel, wir helfen der Community auch zu definieren OK ihr braucht etwa die Technologie, die ist reif oder nicht, die müsste, die brauch ich dann nochmal fünf Jahre EntwicklungUnd das ist oft ein Prozess, der fünf bis zehn Jahre dauert, bis wirklich diese Mission definiert ist und bis man dann auch wirklich weiß, wie viel wird sie kosten. Wir habenAlso wir gehen davon aus, dass äh je nachdem, was für eine Ausschreibung das war,dass wir ein gewisses Volumen an Geld bereitstellen, aber es kann sein, dass sich diese Kosten halbieren oder verdoppeln, je nachdem wie ähm wie ambitioniert die Mission wird.Vielleicht, dass die Technologie noch nicht reif wird, dann verschieben wir die Mission wieder ein bisschen oder wir stellen fest, dass wir mit Sicherheit vereinfacht, wie wir sie direkt fliegen können. Äh und das für diese wirklich großen Mission ist das ein Prozess, der fast ein Jahrzehnt.Dauert und dann dauert's etwa noch fast ein Jahrzehnt bis die dann gebaut wird bis wir dann wirklich also die mit der Industrie zusammenarbeiten um den Satelliten zu entwickeln, mit der mit den verschiedenen Instituten quer durch Europa arbeiten,um die ganze Instrumentierung fertigzustellen, die dann an Bord kommt, die ganzen äh Testverfahren, also insbesondere für Weltraummissionen ähm ist es nochmal wirklich äh ein Schritt komplizierter als für Boden, gebundene Teleskope, wo man immer wieder hin kann und nochmal über dieses Tier oder korrigieren oder nachbessern.
Tim Pritlove
Muss alles stimmen, ne?
Markus Kissler-Patig
Da muss alles sofort stimmen, das heißt ähm es ist praktisch wirklich äh fast also fünf bis zehn Jahre Studie und 5 bis zehn Jahre Bau.Und dann nach zehn bis 20 Jahren äh wird die dann wirklich gestartet und äh und der füllt dann hoffentlich ihre Mission und ähm.Wenn man an Bord vier Streit Treibstoff braucht oder ähm alles, was eben sich verbraucht, dann kann es sein, dass sie die Mischung,nur kurzlebig ist, vielleicht nur fünf Jahre.Wenn's geht betreiben wir die natürlich so lange wie's wie möglich also der Europäer fliegt schon seit über zwanzig Jahren,Hatte ich vorhin erwähnt, schon über 30 Jahre. Äh irgendwann war natürlich, dass es wie ein Kleinwagen, den man nie zur Werkstatt bringen kann, äh dann die haben alle irgendwie einen.Genau, also im im Weltall nicht durchrosten, aber aber manche Teile werden einfach so oft benutzt, äh weil's einfach bewegliche Teile sind, dass die dann irgendwann mal äh kritische Teile auseinanderfallen und das dann meistens das Ende. Aber wir versuchen sie,solange ähm diese diese Mission aktiv wissenschaftlich genutzt werden, versuchen wir sie zu fliegen und weiter zu betreiben bis ans bittere technische Ende.
Tim Pritlove
Wie ist denn das gerade bei Gaya? Geyer hat ja im Prinzip seinen Auftrag jetzt erstmal soweit erfüllt oder eigentlich sogar auch über.
Markus Kissler-Patig
Geier hat sein, hatte eine äh Art fünf Jahre gebraucht, um seinen Auftrag zu erfüllen,und konnte äh und es war schon vorgesehen, dass wenn man es um etwa fünf Jahre verlängertes eben nochmal uns eine äh einen Schritt weiterbringen würde. Und weil alles so gut verlaufen istähm also mit den üblichen Problemen, zum Beispiel, wir haben an, an Bord eines Satellitens immer eine Rennundanz für Systeme, die kritisch sind, äh so Transponder zum Beispiel, also wo wir kommunizieren, die Daten zurückschicken zur Erde,haben wir immer zwei an Bord. Geil hat irgendwann mal einen verloren. Das heißt, hätte es den zweiten auch verloren, könnte Geil jetzt zwar wunderschön messen, aber die Daten überhaupt nicht mehr an uns äh,weiterleiten.Also Geier fliegt schon seit einer Weile mit nur einem Transponder, also äh das heißt, wir sind immer, wir schwitzen immer ein bisschen, wenn wenn der andere so ein bisschen äh wackelt. Ähm,das Teleskop dreht sich um seine eigene Achse und man muss es eben kontrollieren können, auch die Ausrichtung,und dazu braucht man eben minimal Treibstoffe, man braucht eben Treibstoff und der ist dann irgendwann mal alleund Geier äh hat eben seine fünfersten Jahre erfüllt, ist jetzt gerade am, also am in der erstenPeriode seiner nächsten fünf Jahre und wenn alles gut technisch läuft, wird der Treibstoff uns eben tatsächlich nach zehn Jahren etwa ausgehen und in dem Fall eben mein zwanzig, fünfundzwanzig wird gar ja dann kein Treibstoff mehr haben und ähmit dem letzten Treibstoff ins Weltall Richtung, also Sonne geschickt, wird dann in die Sonne fallen, damit's irgendwie kein ähverletzt oder kein Weltraumschrott wird. Äh und dann verabschieden wir uns mit einem äh schönen Feuerwerk äh und freuen uns über die ganzen Daten.
Tim Pritlove
Was ist denn die Erwartung, wie sich die Daten nochmal verbessern.
Markus Kissler-Patig
Einfach indem man längere Zeit reinmisst, also dass man praktisch, wenn man die Sternbewegung haben will, kann man sie natürlich kleine Bewegungen,Minimale Bewegung könnte man in fünf Jahren fast keinen alsogar nicht bemerken, wenn wir mit einem Zehnjahres äh Zeitraum könnte man tatsächlich auch Sterne vermessen, die sich sehr langsam bewegen und da eine Eigenbewegung vermessen. Ähm andererseits natürlich je öfter man die Sterne misst und man misst's immer äh relativ zu anderen Sternen.Je mehr Vergleichpunkte man hat, desto genauer kann man eben eine ähm äh.
Tim Pritlove
Bestimmung machen et cetera.
Markus Kissler-Patig
Andererseits versuchen wir auch was wir Fotometrie nennen, also einfach die Helligkeiten vermessen in verschiedenen Filtern und da sind auch eben mehrere Messungen immer präziser als eine einzelne Messungwir machen auch sogenannte Spektroskopie von den hellsten Sternen, also.
Tim Pritlove
Woraus das alles besteht.
Markus Kissler-Patig
Und da auch, wenn wir je mehr wir Licht sammeln und je öfter man einen Stern anguckt, desto mehr Licht sammelt man für einen Stern. Also es gibt viele Aspekte, die man eben dann äh dann verbessert. Äh irgendwann mal äh.Verbessert sich äh sind die Verbesserungen nur noch minimal. Aber im Fall von Gaya ist eben der Schritt von 5 auf zehn Jahre verlängert, noch ein deutlicher ähein deutscher Fortschritt. Viel länger hätte man denn nur noch minimal Fortschritte machen können, deswegen war die auch von vorneherein designt. Etwa zehn Jahre äh zehn Jahre zu dauern.Die Mission ist allerdings dann nicht zu Ende. Also was ich noch sagen wollte, ist dann der der Satellit ist zwar dann äh äh wird dann verglühen irgendwann malaber die Daten sind dann noch hier und diese die Verarbeitung der Daten, die wird wahrscheinlich nochmal fünf Jahre dauern, also bis man die kompletten Kataloge angefertigt hat, bis man diese Daten alle wirklich äh so vorbereitet hat, dass sie wissenschaftlich nutzbar sind, dass man eben.Wir hoffen uns noch eben eine eine eine volle Version drei des Katalogs rauszubringen, aber auch noch eine Version vier und eine Version fünf.Das wird dann nochmal nach dem Ende der Mission vielleicht fast fünf Jahre dauern. Ähm und dann hätte Geier endgültig seine Mission erfüllt, dann hätten wir die fünfte Version des Katalogs, die dann wahrscheinlich.Also ein halbes Jahrhundert wird sie Bestand haben und und allen Wissenschaftlern dann äh dann wirklich noch dienen.
Tim Pritlove
Unnormal ein halbes Jahrhundert auch äh Pappers erzeugen. Habe ich so den Eindruck, weil.
Markus Kissler-Patig
Noch ein halbes Jahrhundert beweis.
Tim Pritlove
Das ist ja nun wirklich das GrundgerüstOkay, aber machen wir jetzt nicht alles unbedingt an äh Gaia äh fest, weil es ist ja letztlich auch nur eine Mission. Dieser ganze Prozess ähm der Planung mh sind da jetzt ähm schnell durchgegangen.Punkt, an dem man Kostenmachen muss. Ist ja jetzt auch nicht unbedingt etwas, was jetzt Wissenschaftlern so liegt. Also diese Einschätzung, was kostet überhaupt irgendetwas insbesondere im Hinblick darauf, dass man ja vielleicht sagtOkay, wenn wir das jetzt planen, dann bauen wir das Ding ja auch erst frühestens in zehn oder 15 Jahren.Wir hätten gerne eine Technologie, die es ja aber jetzt unter Umständen noch gar nicht gibtwie kann man denn überhaupt Kosten einschätzen für eine Technik, die noch gar nicht erfunden ist?
Markus Kissler-Patig
Also die Wissenschaftler, also der Prozess fängt meistens so an und und das war auch meine erste Erfahrung, dass man als Wissenschaftler sich das natürlich alles wünscht. Und und denkt so, Mensch, Durchbruch wäre, wenn.So genau vermissen kann, äh so viel erfassen kann und so weiter. Und mit diesen wissenschaftlichen Anforderungen geht man dann zumErsten zu den Ingenieuren und und lege die davor. Und die ganz übliche Reaktion der Ingenieure ist, sie schlagen sich die Hände von Kopf und und denken so, diese bescheidenen Wissenschaftler, die haben überhaupt keine Ahnung, was möglich ist und was nicht und.Die die wollen jetzt irgendwas, was vielleicht in einem Jahrhundert möglich ist, aber aber jetzt noch überhaupt nicht. Oder eben äh Dutzende von Milliarden kosten würde und äh und unser Budget ist eben eine Milliarde. Ähm.Riesige Summen sind, aber äh und und dann fängt so ein Interationsprozess an, wo die Wissenschaftler dann anfangen, zu versuchen, die die Ingenieur zu verstehen, wo die Ingenieure vielleicht mal was falsch verstanden haben und wo es eine einfache Möglichkeit gibt, äh da vielleicht.Ähkleineren Einschränkungen, es sehr sehr viel billiger zu machen äh und das ist ein Prozess, der dauert eine ganze Weile, auch was für Technologien man braucht, da ähmdie Ingenieure nehmen auf die die Wissenschafter wörtlich und und das ist eben das Interessante zu sehen, wie dann so langsam man sich annähert und nee, das meine ich überhaupt nicht so und und wenn du mir 90 Prozent davon gibst, dann ist ja auch toll und da können wir eine ganz andere Technologie verwenden, die sehr viel billiger ist und die es schon gibtähm äh manchmal ist das nicht der Fall. Also äh Gravitationswellen ist zum Beispiel ein gutes Beispiel. Da mussten wir eine komplette Mission finden, äh fliegen,denn dieser Paarfinder, bevor wir überhaupt uns überzeugen konnten selber, dass äh Lisa dieses, also äh wo wir.
Tim Pritlove
Eigentlich geplante.
Markus Kissler-Patig
Das Geplante, dass wir jetzt eben äh das äh unterwegs ist, also das äh kommt, aber dass eben äh noch ähm mindestens äh anderthalb Jahrzehnte, also zehn5 Jahre dauern wird, bis es äh bis es da ist. Äh aber da fliegen wir haltdie sind jeweils Millionen Kilometer voneinander entfernt und müssen.Relative Entfernung zueinander auf einen Bruchteil von einem Atommessen, ja? Also das, wenn, wenn man das so sagt, dann dann.Hört auf aber das ist was wo die Technologien entwickelt werden und wir uns dann irgendwann mal.Man muss irgendwo anfangen und und äh da macht man halt den Anfang und guckt, okay Technologie für Technologie hangeln wir uns dann da hoch.
Tim Pritlove
Die fliegenden Goldwürfel im äh Weltall, die diese Abstände dann letzten Endes äh.
Markus Kissler-Patig
Äh ja genau. Und aber gut, nicht alle Missionen sind so kompliziert. Wir haben äh auch Mission, wo wir wissen, okay, das ist relativ Standard. Äh da wollen wir halt äh vielleicht für die nächste Röntgenmission ähm.Ist eine unserer größeren Missionen auch von der ESA äh auch etwa in einem Jahrzehnt äh geplant.Nachfolger von eben XM, war ein extrem erfolgreiches Röntgenteleskop, das jetzt auch schon über 20 Jahre fliegt, vielleicht nochmal zehn Jahre betrieben werden kann, auch da, wenn es keine technischen Probleme gibtUnd da wollen wir einfach die Empfindlichkeit ähm äh verbessern. Das heißt, wir wollen einen größeren Spiegel, äh einen Spiegel mit dem Röntgenstrahleneinfangen kann. Es ist gar nicht so leicht, es ist kein klassischer Spiegel, wo die Röntgenstrahlen eben wie wie optisches Licht einfach reflektiert werden, sondern man versucht eher diese Röntgenstrahlen zu kanalisieren auf den äh auf den Detektor ähm.Das sind Technologien, die kennen wir, die wissen wir, wie's funktionieren soll, aber haben jetzt einen sehr viel höheren Anspruch, weil wirnormalerweise so etwa ein Faktor zehn besser sein wollen mit der nächsten Mission, dass mit der vorherigen, wenn es in der Mission des ähnlichen Typsund für diese Technologien eben entwickelt werden müssen, wo wir auch abschätzen müssen, wie viel kostet das, wo wir auch manchmal wissen, gut hier ist jetzt in der Industrie gibt's ein, zwei äh Betriebe, die das entwickeln könnendann geht vielleicht nur einer Pleite, dann müssen wir gucken, können wir eine neue Industrie, um diese Technologie aufbauen.Und dass eben dieser Iterationsprozess, wo wir dann oft über einige Jahre dann letztendlich diese Mission definieren.Und wenn du einen Wissenschaftler und Ingenieure einig sind, dann,man das Ganze ein, dass ja keiner auf die Idee kommt, ach lass uns doch noch eine Kaffeemaschine dazu einbauen, also und dann wird das alles doppelt so teuer.Sondern er wird wirklich festgelegt, okay, hier hören wir aufwir haben dann praktisch Abstriche gemacht an die Wissenschaft. Die Ingenieure sind überzeugt, dass sie's äh hinkriegen, auch wenn's vielleicht mit hohen Kosten oder Entwicklungsarbeit äh verbunden ist.Und ähm das ist das, was wir in unserem äh Jargon dann äh mischen, Adoption nennen. Wo wir dann alles einfrieren,inklusive dem Preis. Das äh wird den Mitgliedsländern vorgestellt und gesagt, hier, wir denken, wir könnten das für diese Mission äh für diesen Preis bauen. Äh kriegen dann äh grünes Licht und dann fängt diese Bauperiode, die Bauphase an von 5 bis zehn Jahren.
Tim Pritlove
Diese diese Abstimmung, wenn du jetzt sagst, die Wissenschaftler auf der einen Seite, Ingenieure auf der anderen Seite, ist ja jetzt nicht nur so zweiganz unterschiedliche Arbeitsbereiche, sondern meist sind ja die Wissenschaftler sehr viel mehr in so einem universitären Umfeld unterwegs.Während die Ingenieure jetzt in Anführungsstrichen äh tatsächlich ja mehr aus privaten Unternehmen.Dann bestehen die also wirklich konkret, die Sathliten bauen, et cetera. Ist das, ist dieser, äh ist da auch nochmal so ein Kulturbruch, der da noch mit äh reinkommt oder ist das eher Segen.
Markus Kissler-Patig
Also das ist äh nee, das sind wirklich zwei verschiedene Welten, die da auch aufeinander treffen. Äh auch für Leute, die dann schon Erfahrung damit hatten. Das ist immer wieder äh wunderschön und interessant zu sehen. Äh und fürchte ich kompliziert und und äh es gibtvieles Haare raufen äh ähmviele Diskussionen, viele äh erhitzte Diskussionen, ähm weil wirklich die äh Wissenschaftlervorhin nochmal schon mal erwähnt habe, Freigeistler sind, also die wollen äh die wollen versuchen, die wollen probieren, die die sind agil, die die wollen immer neues entdecken,und äh so kann man keine Weltraummission bauen, weil man da ständig die Anforderungen ändern würde und und äh.Wenn wir zu einem Schluss noch kurz was ändert, bei einem Satelliten, der den schickt man dann ins All und der funktioniert nicht, das das niemals.Die Ingenieure, die kommen eben aus 'ner ganz viel rigoroseren Kultur, die die müssen eben dafür stehen, dass das, was hochgeschickt wird oder ins Weltall geschickt wird, dann funktioniert und zwar,mit 99 Punkt neun neun neun Prozent im Wahrscheinlichkeit die arbeiten viel rigorosa, die sind konservativer also ein guter Ingenieur ist konservativ, der.Probiert's jetzt dich mal kurz und schauen wir mal, was passiert, wenn wir hier mal kurz was ändern im Milliardenprojekt, äh wann ist das dem die Milliarde futsch, äh wenn das wirklich mal ein riesiger Fehler war.Und die Wissenschaftler meistens auch dafür zuständig sind, die Instrumentierung zu bauen, ist bei uns oft die Instrumentierung das, was.Was am schwersten zu kontrollieren ist, was Zeitskalen angeht, was Kosten angeht, weil die Wissenschaft immer noch ein bisschen was dran dann,wollen oder auch universitäre Systeme sind unsicherer und man weiß nicht, wann man die den nächsten Studentengruppe oder die die.Dann weiterarbeiten können und so. Ähm während die Ingenieure, die tatsächlich äh Rigos arbeiten, das sind die, die wirklich mit der Industrie arbeiten, die äh im industrielle Prozesse,leiten und ähm die eine ganz andere Angehensweise an Projekte haben, die ähm äh.Viel kontrollierter auch äh über die die Zeitskahlen ähm.Mit festen Zeisskarren arbeiten, die ihre Kosten versuchen wirklich in unter Kontrolle zu halten und so weiter. Also sind auch wirklich diese,äh Projektmanagementkulturen, die oft aufeinander treffen und wo wir dann immer so ein bisschen äh versuchen, als als äh Mittelmann äh ähm oder Mittel,Vermittler eben da diese zwei Welten zusammenzubringen, dass dann letztendlich, wenn beide zusammenkommen, wenn Instrumente in in den Satelliten eingebaut werden müssendass das dann auch harmonisiert und äh auf Zeitsgang passiert, die wir äh vorher vorgesehen haben und auch in den Kosten, die wir vorgesehen haben.
Tim Pritlove
Manche Instrumente werden ja aber auch im universitären Kontext entwickelt. Ist das eher die Ausnahme oder hält sich das so fifty fifty.
Markus Kissler-Patig
Also fast alle Instrumente werden dem universellen Kontakt ähm ausgearbeitet. Also die ähm nur wenn es wirklich größere Instrumente sind, die äh industrielle Prozesse brauchen.Dann werden sie von der Industrie entwickelt, aber die in der Regel ist es wirklich so Plattform Satellits also.Äh also der der stammt wird in der Industrie entwickelt. Die ganze Instrumentierung wird an den Unis oder Forschungslaboren äh entwickelt. Und das sind eben diese zwei Kulturen, die aufeinander treffen.
Tim Pritlove
Jetzt ähm sind wir quasi an dem Punkt.Mission, ganz gerne ein paar Beispiele äh nennen, wo sich das vielleicht gut festmachen kann, so sagen wir mal, eine Mission hat jetzt ihren äh diesen Punkt erreicht. Man ist sich über die Kosten einig, man hatgo. Man weiß, welche Instrumente man äh haben will, was die können soll, wie das Ding gebaut werden soll und es liegt mehr oder weniger auch so einen Zeitplan jetzt schon bereit, das heißt, das.Ganze geht dann in diese Bauphase über. Ähm die äh ja, der der eigentliche Satit wird äh gebaut.Wie wird denn das jetzt dann weiter begleitet? Wer wer tritt denn jetzt zu diesem Zeitpunkt noch mit mit ein?
Markus Kissler-Patig
Also man versucht zu dem Zeitpunkt dann die Wissenschaftler rauszuhalten, weil die würden kommen und wollen dann nochmal alles ändern. Also,wirklich dann zu dem Zeitpunkt alles einzufrieren. Das heißt, ähm äh um zurückzukommen auf diese drei großen Abteilungen, die wir im äh Direktor für Wissenschaft haben, übernimmt dann äh unsere äh Projektsabteilung dasund die schließen dann Verträge, verbindliche Verträge mit der Industrie ab.Für Satelliten, das sind große Verträge, sind Verträge von 100, 200 Millionen und die haben dann praktisch ähm äh,Teams, die dann diese Verträge abschließen, vorbereiten, verfolgen, äh mit der Industriearbeiten sie ähm auf Zack halten und so weiter,Teams müssen dann auf der anderen Seite eben auch mit äh den Unis arbeiten und die eben äh etwa im selben Schritttempo äh dazu anhalten, dass sie eben auch die Instrumentierung liefern.Und ähm.Letztendlich ist, sind die dafür zuständig, dass dann alles zusammenkommt und die sind auch zuständig, dass das alles verpackt wird und auch für den äh Launch, also äh.Ob es den Erd- äh Erdumlaufbahnen oder ins äh ins Sonnensystem geschickt wird. Und in dem Moment, wo siewo das auf der richtigen Bahn ist und äh ähm alles demonstriert ist, dass es eben funktioniert an Bord. Übergeben sie das an die Abteilung, die dann den Betrieb aufnimmt. Also das ist äh meine Abteilung.In dieser Zeit, also gleichzeitig werden zwei andere äh Kern ähm Komponenten entwickelt für eine Mission.Einerseits, was wir Mission Operations nennen oder Mission Operation CenterAlso das heißt, die äh die ganze Kommunikation mit dem Satelliten, ähm alles, was äh Software an Board ist äh und so weitervon unseren Kollegen bei der ESOG, also in in Darmstadt entwickelt, das sind die Leute, die später wirklich, die sind Sattel kontrollieren müssen und ausrichten, dorthin, wo die Wissenschaftler ihn haben wollen.Äh für den Teil des Betriebs,Und der zweite große Teil ist eben dieses Science Operations, also das heißt ähm wir hier bei der ESAG entwickeln dann alles, was für den Wissenschaft und Betrieb nötig ist. Das heißt, ähm,wenn es planetarische Missionen sind, müssen wir die Möglichkeit haben, Pläne zu entwickeln, wenn wir dann einmal im Umlauf ist von Maas zum Beispiel, was wird jeden Tag beobachtet, welche Instrumente werden ein- und ausgeschaltet, wie kommen die Daten runter und so weiter. Diese ganzenalso Planungstools, was ihr alles raufschicken zu beseitigen, damit derweiß, was er zu tun hat jeden Tag und dann eben auch die Daten kommen dann wieder runter und wir müssen eben verstehen, wie wie wir die verarbeitendie ganzen Prozesse und Systeme, die eben diese Daten von Rohdaten in wissenschaftliche Daten umwandeln, werden hier entwickeltund eben dieses ganze ähm die Seite des Archivs wird äh wird hier dann in zwischenzeitlich entwickelt. Das heißt, während die Hardware,von diesem Debatten für Projekts entwickelt wird entwickeln gleichzeitig,die Leute bei der eine Mission Operation Center, die Leute bei der ISAC entwickeln ein Science Operation Center und diese drei großen Komponenten kommen dann am Schluss zusammen.So dass man praktisch die Hardware hat, den Satelliten und die Instrumentierung an Bord und eben ein System, um diesen Satelliten auszurichten und zu kontrollierenund gleichzeitig diese komplette Infrastruktur, die man braucht, um dann die wissenschaftliche Wissenschaft rauszuholen, sowohl dies alles, was man an Steuerungsbefehlen hochschickt, als auch diese Datenverwertung, wenn sie eben wieder runterkommt.
Tim Pritlove
Mhm. Und dann, wenn man alles richtig gemacht hat, dann äh gibt's den Start.
Markus Kissler-Patig
Genau, nach fünf bis zehn Jahren hat man dann praktisch alles zusammen, testet es, äh es kann es können sehr lange Tests sein, jetzt wie für James Webs hat's eben äh Jahre gedauert, bis man wirklich sich sicher war, alles funktioniert rein, muss los. Äh und dann kommt eben äh der.
Tim Pritlove
Beziehungsweise ja auch mehrfach festgestellt hat, so geht's nicht.
Markus Kissler-Patig
Genau undeinmal zurück und dann von vorne anfangen. Äh also so kam eben oft und irgendwie ist ein kleiner Fehler ist, da verzögert sich so drei Monate, wenn's ein größerer Fehler ist, verzögert sich schon drei Jahreähm also da hat man eben noch Überraschungen, aber wenn man sich dann sicher ist, das System dieser Sattel, diese Mission fliegt jetzt und wir haben alles vorbereitet, wie es sich gehörtdann kommt eben der große Tag des des Launchs, also dann äh werden natürlich vorher schon definiert mit äh welche Trägerrakete eben je nachdem nach Gewicht und Größe des Sattellitz eben äh den Sattel dorthin bringt, wo wir ihn haben wollenäh in vielen Fällen ist es eben eine Erdumlaufbahn, für viele Gastronomie-Missionen möchte man einfach nur über der Atmosphäre sein, um entweder an die Wellenlängen ranzukommen, die ich nicht durch die Atmosphäre durchkommen würdenoder einfach die die Verschwemmung der Atmosphäre oder diese Bildverzerrung, die die Atmosphäre mit sich bringt eben zu vermeiden.Anderen Fällen möchte man einfach einen ruhigen Ort kommen.James Web zum Beispiel, dass der Nachfolger vom Hubbleter einfach an einem Punkt geschickt hinter der Erde und wird der der Erde einfach folgenPunkt, wo die Gravitation der Erde und der Sonne sich mehr oder weniger gegenseitig aufheben, das heißt man.
Tim Pritlove
Punkt zwei.
Markus Kissler-Patig
An dem Ort kann man eben einen Satelliten mit wenig Treibstoff einfach lassen, der wird sich dann nicht bewegen, der wird nicht in eine Richtung der andere eben äh die Erde verlassen.Im Fall von möchte man natürlich die den Sattel auf eine Umlaufbahn schicken wie zum Beispiel jetzt letztens der dann wo man sich dann eben.Auf eine Umlaufbahn bringt, die nah an der Sonne vorbeifährt, beziehungsweise für den wollten wir mal die Sonne von oben sehen. Das heißt, im Laufe von einigen Jahren werden wir anhand.Von äh Swing-Bys, also wir andere Planeten, das Kavitationsfeld von anderen Planeten benutzen, um langsam diese Umlaufbahn ähm äh zu neigen und eben aus der,Ebene der der Erdumlaufbahn rauskommen und mit einer Neigung dann so langsam die Bahn ähm so verschieben, dass wir dann von oben oder von einem höheren.Auf die Sonne runter gucken können. Ähm.Es ist dann immer noch kompliziert, wie man eben diese Satelliten äh durch unser Sonnensystem fliegt. Will man natürlich äh so komplizierte Sachen machen will wie mit äh der Mission, die nächstes Jahr startet, Ex-Omas unser ähm Rover und unsere Serviceplattformähm da müssen wir eben bis zum Maß fliegen, dort in der Umlaufbahn kommen und von dort aus eben den Rover unddie Serviceplattform absetzen, das ist eben auch äh kompliziert in der Navigation von Satelliten. Ähm,Ja und das äh das muss eben alles passieren. Wenn das passiert und wir endlich dort sind oder auf der Umlaufbahn wir wollen.Dann fangen wir endlich mit dem wissenschaftlichen Betrieb an und kommen dann dem Ziel näher ebenWissenschaft mit dieser Mission zu betreiben, was ja von vornherein eben äh der Sinn war.
Tim Pritlove
Wie lange das alles dauern kann, das äh habe ich gerade eben noch mal gesehen, weil ich sowohl äh über das vorhin schon erwähnt, der XM, was ja schon läuft, schon äh vor langer, langer Zeit, nämlich zwanzig dreizehneine Sendung gemacht habe. Damals schon festgestellt haben, dass es sich um eine der erfolgreichsten und langlebigsten handelt. Das äh hat sich seitdem sozusagen auch nicht geändert.Und äh ja, nur einen Monat später äh war dann auch der Solar Orbitter im Gespräch, damals halt noch in der fernen Zukunft, zwanzig ähmsollte der Staat sein, letzten Endes ist es dann auch erst 2020 ähm.Gegangen und äh ja, jetzt ist das Ding noch unterwegs, wenn ich das richtig sehe, erst zwanzig dreißig erreicht. Äh der Solar Orbita äh letztlich wirklich,täten. Später sogar.
Markus Kissler-Patig
Betrieb fängt der dieses Jahr wird er mit dem wissenschaftlichen Betrieb anfangen und wird dann hoffentlich eben bis 2030 oder noch länger eben in Betrieb sein, hoffen wir. Ähm.
Tim Pritlove
Aber da stehen auch so diverse Swing-Bys irgendwie an, aber ach so, das ist dann sozusagen Teil der Mission.
Markus Kissler-Patig
Das ist Teil der Mission. Wir fangen wir fangen ähm dieses Jahr mit dem dieses Jahr an. Äh also wir haben schon die wissenschaftlichen Instrumente eingeschaltet. Wir haben auch schon Wissenschaft ähverschiedene, also bei den äh vorbeifliegenden anderen Planeten, auch schon äh wissenschaftliche Messungen äh gemachtund jetzt so bei jedem werden wir es schaffen, diese den Orbit dieses Satellitens so langsam mehr und mehr und mehr und mehr zu neigen. Ähm aber fangen natürlich dies Jahr schon an mit wissenschaftlichen Vermessungen und haben dann eine lange Zeitreihe, wo wir uns dann die Sonne von verschiedenen aus verschiedenen Winkeln angucken können und immer wieder,und äh ähm die Sonne ist natürlich auch aktiv und hat so einen Zyklus von elf, beziehungsweise 22 Jahren und das heißt, wir können.Die Sonne durch so in einen Zyklus begleiten und gucken, wie verändern sich die verschiedenen Phänomene im Laufe eines Zyklus, was äh natürlich für uns interessant ist als Stern, die Sonne ist der nächste Stern, den wir haben, wenn wir den Rest des Kosmos, der jaMaterie, hauptsächlich auf Sternen besteht, verstehen wollen, müssen wir erstmal die Sonne verstehen.Andererseits äh ist die Sonder auch das, was am meisten Einfluss auf unser Klima hat und eben die Sonne sehr gut zu verstehen, wird uns auch sehr gut äh dabei helfen, zu verstehen, was für Klimaänderungen auf uns zukommen.
Tim Pritlove
Macht man sich immer nicht so richtig klar. Also ich äh hatte eben selber so einen kleinen Gedankenfehler, so dieses Jahr, wir wollen uns nochmal die Sonne von oben anschauen. Ist ja gar nicht so einfach, wenn man irgendwie erstmal in so einem Orbit äh um die Sonne herum ist und bei der Erde startet, ein Vehikel dann überhauptso in diese Richtung und Geschwindigkeit zu bekommen, dass man sowas machen kann, wie von oben gucken.Ohne jetzt gleich äh einmal vorbei und äh nimm mal wiedersehen äh zu sein. Da gehört natürlich einiges an Anpassungen dazuUnd das sind dann eben auch so Dinge, die ja auch fortwährend immer wieder überprüft werden müssen und das ist dann hier auch Teil der Arbeit.
Markus Kissler-Patig
Genau, wir haben äh und da auch ist es äh es gibt ein großes äh sogenanntes Flight Dinnermix Team in äh in Darmstadt. Äh und das sind die Leute, die diese Bahn berechnen, also die wirklich äh,zehn Jahre im Voraus auf Millisekunden berechnen können, wann ein Sattel an welchem Planeten vorbeifliegt und in welcher Entfernung, in welcher äh Richtung er vorbei fliegen muss und wie nah,um genau dann durch die Schwerkraft dieses Planetens in die veränderte Umlaufbahn zu kommen, in die man diese möchte.Warum wir diese Gravitation der Planeten benutzen, ist weil unsere Trägerraketen, wenn wir eine unendlich große bauen könnten, dann könnten wir auch auf die,Wege irgendwo hinfliegen, wo wir hinwollen. Man bräuchte dann unendlich viel Treibstoff und so weiter. Aber weil man eben äh mit dem arbeitet, mit dem was man hat und selbst unsere größten Raketen im Moment für die Europäer die Ariane 5 oder jetzt.Die Ariane sechs, ähm eben äh nur begrenzt äh Masse hochschießen können mit begrenzt Treibstoff ähm müssen wir,schlau der Gravitation der anderen Planeten bedienen, wenn wir wirklich weit kommen wollen. Das dauert dann oft äh länger als auf direktem äh auf auf gerader Linie.Zum Beispiel Juice, was unsere nächste Mission zum Jupiter ist, äh startet äh zwanzig dreiundzwanzigdie wird sechs, sieben Jahre brauchen bis zum Jupiter, weil sie eben mit zu viel Schwung wie es geht die Erde verlassen wirdaber der Schwung nicht reißt bis auf direkte Bahn zum Jupiter zu kommen beziehungsweise auch nicht in genau der mit der Geschwindigkeit und der wir sie wollen, sondern der wird auch eben sechs, siebenmachen, um dann letztendlich äh dann im Jupiter anzukommen. Nach sechs, sieben Jahren.
Tim Pritlove
Planeten Billard möglichst ohne Kollisionen auf jeden Fall.
Markus Kissler-Patig
Genau.
Tim Pritlove
Bin ich schon so ein bisschen drum äh herum äh geeiert, aber ich würde gerne nochmal einen Fokus darauf äh legen, weil die Bodentelesgruppe spielen ja hier auch eine große Rolle.Und ähm hast ja schon angedeutet, was ja bei dem äh ELT ganz maßstäblich mit beteiligt und das ist ja nun eigentlich auch so das nächste große Ding. Inwiefern unterscheidet sich jetzt diePlanung und die Arbeit an solchen Teleskopen von den SpaceMissionen und ähm vielleicht können wir ja auch mal so ein bisschen nochmal einen Ausblick geben auf das, was das ELT leisten soll und welche Herausforderungen jetzt gerade in dieser Anbahnung dieses Projekts äh so ansteht.
Markus Kissler-Patig
Ähm ja, dazu gibt's äh viel zu erzählen. Vielleicht erstmal, dass äh es äh heutzutage,undenkbar wäre, äh nur ein Teleskop für die Forschung zu benutzen, äh die die Wissenschaftler, egal für welches Projekt, benutzen wirklich ähm alle,alle Teleskope, die möglichst und und äh denkbar sind und das sind äh fast immer Kombinationen von Weltraum, Teleskopen und Bodenteleskopen.Und warum baut man überhaupt Weltraum und Bodenteleskope? Äh auf dem Boden kann man billiger bauen, es sind äh eben diese ganzen Ansprüche, das alles auf anAnhieb funktionieren muss. Das alles auch im Weltall funktionieren muss und so weiter sind natürlich sehr äh nicht da. Das heißt, diese die Technologien sind billiger.Ähm man braucht auch nicht präzise zu planen, weil man eben eine äh wieder.Dran kann. Und äh da unterscheiden sich die Kosten dann oft um ein äh um ein Vielfaches. Wobei das eben auch äh eins Komma fünf Milliarden kosten wird, also da ist man auch wieder bei einem.Einen Preis von von,großen immer noch oder dennoch eben schon sehr teure Mission.Warum baut man überhaupt auf dem äh bodengebunde Teleskop, wenn man hier sehr viel größere Teleskope bauen kann. Das ELT hat wird einen Spiegeldurchmesser von fast 40 Metern haben. Das heißt, man kann damit sehr, sehr viele Foton, sehr, sehr viel Licht sammeln.Und das größte Weltraum Teleskop wird eben das Web Teleskop, das Web Teleskop sein, das hat einen sechseinhalb Meter Spiegel Durchmesser. Das heißt, wenn man viele Fotoen sammeln möchte, kann man das immer noch sehr viel effizienter vom Boden machen.Was verliert man? Man verliert natürlich die Tatsache, dass man durch die Atmosphäre gucken muss. Das heißt, nur gewisse Wellenlängen äh erreichbar sind.Das Web-Terskop kann eben im Infraroten und fernen Infraroten gucken, das wird das ILT nicht können.Ähm und man muss äh sich damit abfinden, dass das Licht durch die Atmosphäre eben verzehrt wird und man äh unschärfere Bilder bekommt, als wie man über der Atmosphäre wäre.
Tim Pritlove
Beziehungsweise entsprechende Strategien anwenden muss, um das äh dann wieder zu korrigieren.
Markus Kissler-Patig
Genau und das ist eben, was das ILT kann, da kann man wirklich an die äh an die Grenze der Optik gehen, an die Beugungsgrenze äh mit der mit der Schärfe der Bilder. Äh und dann hat man praktisch die ähm eine höhere Auflösung, weil die.Auflösung eines Bildes ist umgekehrt proportional zum Durchmesser des Teleskops, das heißt, wenn man einen sehr großen Spiegel hat, hat man auch äh extrem,Schafe Bilder beziehungsweise kann eben 'ne hohe Auflösung haben, 'ne bildliche Auflösung wenn das Teleskop kleiner ist, also wenn der Spiegeldurchmesser kleiner ist, ist die Auflösung, die bildliche Auflösung des CSUs geringerdass es ihr Tier auf dem Boden wird, äh weil man eben diese Atmosphäre korrigiert durch adaptive Optik,wird eine fünffache höhere bildliche Auflösung haben oder räumliche Auflösung haben als das Web-Teleskop.Man wird also schärfere Bilder oder höhere Auflösungen Bilder machen können mit dem äh mit dem ILT. Andererseits, wie ich schon erwähnt habe, wird man sehr viel mehr Futuren.Sammeln, das heißt.Wenn man Spektroskopie betreibt, also das Licht bricht in in all seine Bestandteile in den ganzen Wellenlängen. Ähm es gibt bei Auflösung, also wie fein,bricht man dieses Lichtwenig Futuren hat, dann kann man's eben nur äh grob brechen, äh um dann noch genug bei jeder Wellenlänge zu haben, um was zu vermessen. Wir werden extrem viele Futuren sammelt, kann man das eben sehr, sehr hoch auf,mit einer hohen Spektralen Auflösung. Und das ILT wird also praktisch.Da wo es mehr können wird, als das Web-Teleskop ist eben in der räumlichen Auflösung und in der Spektralenauflösung. Und da wo das Web-Disko,dem ihr zu überlegen sein wird, ist eben in der Empfindlichkeit und insbesondere auch in dem es eben vorstoßen kann in den Infrarotbereich,also für Messungen im fernen Universum, wo eben äh das Licht.Ähm zehn Milliarden Jahre äh gewandert durchs Universum und sich rot verschoben hat, also im Infraroten gelandet ist,Da wird es äh Web-Teleskop dem überlegen sein, den bodengebundenen Teleskopen.Und für kalte Objekte, die hauptsächlich im Infraroten äh eben äh Licht ausstrahlen, zum Beispiel Exo-Planeten, da wird auch das Web empfindlicher sein als das bodengebundene Teleskop.Es ist aber genauso geplant, dass eben diese zwei Teleskope des Web äh Weltraum Teleskop und das äh European Extremiscoup auf dem Boden eben sich komplementieren und die meisten Forschungsprojekte werden wirklich beide benutzen.
Tim Pritlove
Beziehungsweise ist ja der Trend zur Multiteleskopie äh voll äh.Entflammt, nicht zuletzt mit diesem Event Horizon, Teleskop Projekt, was ja ohnehin äh alle Beobachtungsmöglichkeiten des Planeten zusammengeschlossen hat, um um dieses schwarze Loch äh endlich mal ähm visualisieren zu können, sage ich mal, fotografieren ist vielleicht nicht die richtige Begriff.
Markus Kissler-Patig
Genau, da waren Leute eben sehr kreativ und haben eben sehr, sehr viele Teleskope zusammengeschlossen. Was im im äh im Radiowellenling Bereich geht, weil da die Wellen sehr lang sind und man eben sehr genau vermessen kann, wann sie ankommen.Diese Art von Technologie kann man eben noch nicht im Infraroten oder optischen verwenden aber die Hoffnung ist, dass wenn's irgendwann mal auch kann, wenn man,Uhren baut, die die präzise genug sind, ja?
Tim Pritlove
Mhm. Romzahl, 4undsiebzig hat sich mit den schwarzen Löchern äh beschäftigt, also konkret mit dem Event Reisen, Teleskop-Projekt als das erste Bild äh rauskam, habe ich mit Michael äh Kramer gesprochen und äh ja auchüber die Bodenteleskope hatte ich auch schon mitm alten Kollegen äh von dir Jochen Liske, 8undsechzig, zwanzigzehn7 haben wir das äh schon aufgenommen. Da ging's auch um die ganze Geschichte der bodengestützten Astrodomien. Da haben wir auch schon so einen ersten äh,blick gewagt auf das äh ELT sicherlich damals auch noch mit anderen Erwartungshaltungen, wann es denn nun äh vielleicht in Betrieb gehen kann, wie sieht's denn da gerade aus, wannWann wird denn das dann sein?
Markus Kissler-Patig
Also im Moment ist es es war geplant für 2024 dann ist die Pandemie dazwischen gekommenäh Chile ähm hart getroffen hatdas heißt die Bauarbeiten auf dem Bau Berg selber wurden ausgesetzt und bis jetzt auch wieder die die Industrie sich sammelt und wieder anfängthat sich das ganze Projekt jetzt um äh etwa zwei Jahre verschoben. Also man rechnet damit, dass das äh erste Licht vom ILT 226 empfangen worden ist.Und um den Kontext zu setzen, also ich habe auf dem, also äh Jochen, dem du gerade erwähnt hast und ich habe schon äh Anfang der Zweitausender Jahre da drauf gearbeitet, zweitausendfünf, zweitausendacht äh also zwischenzeitlich so fünf und zweitausendacht haben wir da schon mitgemacht. Zweitausendacht haben wir das übernommendie wissenschaftliche Leitung und zweitausendzwölfhatten wir eigentlich das Teleskop definiert, hatten das Konzept und dachten jetzt muss es nur noch gebaut werden. Und und jetzt sehen wir das eben vierzehn Jahre.Dauern wird, bis das eben fertiggestellt wird. Das war noch Technologien, da hatten wir wirklich die, die Ingenieure bis ans äußere Endegepusht äh und das ein fantastisches Teleskop äh werden, aber daran sieht man eben auch, dass diese Projekte äh wirklich lange dauern, ne.
Tim Pritlove
Aber jetzt im Vergleich zu den Space Missionen, wo ja klar ist, dass man diesen Freeze machen muss, weil irgendwann muss man's ja mal bauen, gilt sicherlich in gewisser Hinsicht auch fürs Bundtestkop, aber wie sehr ändert sich die Technologie äh auf dem Weg dahin,bis es denn wirklich mal gebaut ist.
Markus Kissler-Patig
Diese die Technologie für das ILT, für den, für das Teleskop selber von den Instrumenten absieht. Ähm da waren wir wirklich so an der Grenze der Technologie, dass ähm.In denzehn Jahren, zwischen äh dem äh dem Einfrieren und äh der Fertigstellung sich nicht sehr viel tun wird. Ähm das sind äh Messungsverfahren, Schleifungsverfahren, die entwickeln sich relativ langsam, beziehungsweisedie sponsern praktisch die die Wissenschaften, äh die Sponsoren, die Entwicklungsarbeit in der Industrie, um überhaupt diese Technologien zu entwickeln.Die Industrie hätten sie nicht es gibt manche Technologien die die Industrie nicht selber entwickelt hätte wenn wir sie nicht sponsern würden also das ist nicht so das wenn wir warten würden plötzlich diese Technologien erscheinen würden.Und äh ich glaube da für das ILT speziell für das Teleskop ähm hat sich in zehn Jahren.Nicht eine Technologie radikal gewandelt. Bei der Instrumentierung ähm,Da hat man äh bei der bodengebundenen Gastronomie auch gewisse Grenzen erreicht, weil ähm.In den 80er, 90er Jahren hat man an den Detektoren sehr viel gearbeitet. Also man hatte da, man ist für ihn von alten Fotoplatten zur elektronischen Detektoren, zu CCDs übergegangen. Ähm heutzutage hat man dieses Device, die eben auch in jedem Mobiltelefon drin sinddie sind.Da hat ein Gastronom eine Technologie entwickelt, die wirklich jedes Lichtwand einfangen, weil wenn eine Lichtquand eben zehn Milliarden Jahre durchs Weltall gereist ist, dann müsste man nicht, dass man es auf den Detektor trifft und da gar nichtaufgenommen wird, ähm weil er dieses Texto nicht empfindlich genug ist. Das heißt, diese Sektoren, die wir mitentwickelt haben mit der Industrie, die hatten Quantenausbeuten von 90 Prozent Plus.Eine Mobiltelefon, da da ist es meistens zu hell tagsüber, dass wenn man dann einfach nur ein Foto nehmen will, es reicht, wenn man 30, 40 Prozent Quantenausbeute hat oder oder noch geringer. Ähm das heißt, da hat sich die Psychologie etwas anders entwickelt, weil die Industrie.Arbeitet nicht nur für die Gastronomen, sondern hauptsächlich da, wo eben ähm Markt ist und und Geschäft. Ähmund äh da hat da haben wir praktisch eine gewisse Grenze erreicht an an den Diktorenwas Optiken angeht, da ist auch Telekommunikation, hat uns da enorm in die Hände gespielt, weil der Kommunikationsmarkt mit Optiken, äh mit ähmGlasfasern und so weiter eben sehr viel an den Entwicklung von Optiken mitgearbeitet und geholfen hat,da wird sich aber auch nicht sehr viel tun, das heißt bei der Instrumentierung auf im optischen oder nach wie vor.Haben wir auch eine gewisse Grenze erreicht, da wird man auch nicht mehr so einen Quantensprung schaffen in in den nächsten Jahren. Das heißt, indem wir die Technologien uns festgelegt haben vor zehn Jahren, haben wir nicht so viel verlorenähm in dem Sinne, dass wenn wir jetzt ähfünf bis zehn Jahre gewartet hätten, bevor wir die Instrumentierung definiert hätten, äh wir plötzlich eine sehr viel bessere Instrumentierung hätten heutzutage.Man viele Stationen hat für Instrumentierungen und es auch geplant ist, diese Instrumentierung regelmäßig zu ersetzen.Das kann man bei einer Weltraummission natürlich nicht. Man hat ein Teleskop oder einen Satelliten. Man packtdie Instrumentierung drauf und damit muss man dann praktisch die nächsten zehn, zwanzig, dreißig Jahre manchmal erleben. Und dann ist die Technologie dort natürlich veraltet und man hätte natürlich was, äh wenn man's ersetzen könnte, was man früher beim,Tedesco beim Pavel.
Tim Pritlove
Noch machen konnte. Hm.
Markus Kissler-Patig
Da konnte man eben ab und zu mal wieder hoch fliegen und die Astronauten haben dann praktisch ein Instrument ersetzt durch ein anderes.Seitdem das Programm eingestellt worden ist, kann man das nicht mehr beim Hubbel und,hat damit gerechnet, dass es jemals wieder möglich sein wird das heißt James Web zum Beispiel wird ja zum da haben wir,drüber geredet, geschickt äh eine Millionen Kilometer von der Erde entfernt. Da fliegt man keine Astronauten mehr hin. Ähm und ähm ja bei.Bodengebundene Teleskopen, da ist es mit eingeplant, dass die Instrumentierung eben äh irgendwann mal ähm gewechselt wird und dann könnte man neue Technologien.Einbauen, wobei man, wenn manEin einzelnes Teleskop hat wie das ILT, anstatt zum Beispiel vier, wie bei einem äh VIT, also acht Meterklasse Teleskopekonnte drei Instrumente aufnehmen, das heißt man hatte zwölf verschiedene Instrumente gleichzeitig, man konnte sich eben da eine Palette an Instrumentierung.Vom UV bis zum Infraroten über optisch über äh äh bildgebende Instrumente über Spektrum, Feinauflösen, grob auflösen und so weiter. Beim ILT hat man nur ein Tedisko.Und äh da wird man versuchen.So viele Instrumente wie möglich, gleichzeitig dran zu betreiben, aber die müssen sich das Teleskop teilen, das heißt, sie können auch nicht gleichzeitig alle beobachten. Äh und da muss man sich dann eben ein bisschen äh genauer überlegen.Instrument möchte man am Teleskop montieren, wie lange möchte man's dran haben? Wann hat's sein Zweck erfüllt.Und so weiter. Also es ist ein bisschen ein anderer Planungsprozess beim beim ILTS, beim, beim VIT.
Tim Pritlove
Jetzt wird ja das ELT von der E so betrieben oder auch mit geplant.Also es ist ja ursprünglich dort quasi entwickelt worden. Ähm wie sieht diese Kooperation jetzt konkret aus? Also verstehe ich das richtig, dassdas I sagt jetzt an dieser Stelle quasi so Operationsdienstleister ist und dem E so mehr oder weniger die Wissenschaft zuführt oder die Datendie von der ESO kommen, den Wissenschaftlern zuführt, ist das dann äh die primäre Rolle äh ab dem Tag, wo das Ding im Betrieb ist, ähm wie muss man sich diesen Verbund vorstellen vonunterschiedlich angelegten Organisationen.
Markus Kissler-Patig
Es sind ähm letztendlich sind es zwei äh Schwesterorganisationen, die eh so und die E sah. Ähm und wenn man sich die Strukturen angucktdas sind eben ähm auf Englisch äh Organisations, also äh äh mehr staatliche eben Organisationen. Die haben fast exakt dieselben Statuten, sind auf einem englischen Prinzip aufgebaut,und sind und sehen sich glaub ich als gleichwertig nur die einen sind zuständig die anderen für Weltraum-Astronomie und wir spielen uns die wissenschaftlichdie Wissenschaft,gegenseitig zu sozusagen. Also es ist nicht so, als würden äh als würden wir bei der Esa jetzt mit so einer Weltraummission die Grundlagen schaffen, die dann das äh ILT, die bodengebundene Gastronomie braucht,sondern ingekehrt, wo dieBodengebundene Gastronomie eben die Weltraumgastronomie bedient. Ähm und jetzt an dem Beispiel äh YLT und Web, also ähm ist es so, dass äh wir sicherlich Entdeckungen mit dem ILT machen werden, die mit dem äh Web dann weiter äh verfolgt werdenmüssen oder können. Ähm aber das äh das Gegenteil gilt dann auch, wo dann in Deckung mit dem Webdriscoup gemacht werden.Dann unbedingt das ILT brauchen, um äh um dann wirklich zum zum Kern äh.
Tim Pritlove
Ja gut, aber wenn ich jetzt so so Teil einer Wissenschaftsgruppe äh wäre, dir ist der Meinung, dass hier 40 Meter äh da müssen wir unbedingt mal irgendwas mit beobachten. So, wo laufe ich denn als erstes hin? So Iso oder zu Isaak?
Markus Kissler-Patig
Also wenn wenn man das Programm, also aber oft denken die Gruppen, also wir sind ja beide Dienstleister, sowohl die ESO als auch die sind beides Dienstleister, wie stellen die Teleskope zur Verfügung, diesen Vorschussgruppen.Und äh äh.In den meisten Fällen werden diese Forschungsgruppen, die meinetwegen eben eine Kollaboration in in drei drei Mitgliedsländern, drei europäischen Ländern irgendwie von verschiedenen Unis da zusammenkommen, die werdenAnträge an beiden Stellen. Also sie werden sagen, hier wir haben ein super Projekt, dazu brauchen wir aber das ILT und das Web zum Beispielund die werden gleichzeitig bei beiden Anträge stellen und sagen und wir möchten eine äh wir brauchen Daten von beiden Teleskopenum äh um unser Projekt zu realisieren. Äh und die werden dann von beiden begutachtet. In manchen Fällen gibt's sogar eben äh schließen wir uns kurz und äh wenn's wirklich große.Daten sind, zum Beispiel, ich hatte vorhin Plato erwähnt, diese Durchmusterung von Exemplaten, da haben wir schon eben von vorne rein, also bevor dieser Sattel überhaupt fliegt, sind wir in Kontakt getreten mit der Esel und gesagt, um damit dieses Programm, diese Durchmüssung erfolgreich ist,müssen wir eben so und so viel Teleskopzeit äh Bodengebunden reservieren, um eben äh diese ganze Nachbeobachtung zu machen. Und da entstehen dann eben praktisch schon im vor äh im Voraus Deals.
Tim Pritlove
Okay, aber das ILT ist generell.Sozusagen eher so macht die Zuteilung für äh das ELT, Esa macht Zuteilung für die Space äh Mission, das ist schon relativ klar getrennt, aber es gibt doch auch bodengeschützte Teleskope, die jetzt direkt an der ISAG noch mit dranhängen.
Markus Kissler-Patig
Es gibt auch Bunt, also es gibt Boden äh also.
Tim Pritlove
Anderem hier direkt auf dem Campus, wenn ich das richtig sehe, ne? Die.
Markus Kissler-Patig
Ähm das sind Antennen, das sind da die benutzen wir eigentlich nur wirklich zur ähm also die.
Tim Pritlove
Zur Kommunikation.
Markus Kissler-Patig
Kommunikation, also wir haben hier äh zwei 15 Meter Antennen auf dem Campus. Wir haben dann eine eine dreißig Meter Antenne, die etwas weiter hier ähm äh von Madrid eine Stunde entfernt ist. Äh die benutzen wir jetzt zur Kommunikation. Das einzige Teleskop, das wir auf der anderen Seite hier auf dem Campus habenbenutzen wir eigentlich mehr für für Lehrzwecke. Wir haben hier sehr viele Schulen und und machen auch eben Arbeit.
Tim Pritlove
Ist noch ein Bund, Teleskop jetzt unmittelbar unter der Egide der Isark.
Markus Kissler-Patig
Der Esack nicht. Wir haben andere, wo wir kleinere Teleskope benutzen, also wir haben auch 'nen es gibt tatsächlich was mit dem pompösen Titel Planetary Defense Abteilung bei der EsAObjekte angucken, die in Erdnähe kämen oder kommen würden oder kommen äh und um die zu durchmusternda gibt's da gibt's Projekte auch zusammen mit der ESOum eben Teleskop aufzustellen, auch auf äh auf Standorten der EZO und dort eben äh diese äh Vorbereitung oder oder Warnsystem im ähm.
Tim Pritlove
Programme, ne.
Markus Kissler-Patig
Festivals. Genau, die erstes A Programme, da drunter fällt es eben.
Tim Pritlove
Genau. Hatte ich auch schon mal. Raumzeit 4unddreißig äh mit Detlef äh Koschni.
Markus Kissler-Patig
Ja, der verarbeitet auch bei uns, also ist in in unserem Department und macht weiter eben diese Sachen, ja.
Tim Pritlove
Eine große Familie ah hier alles auf jeden Fall.
Markus Kissler-Patig
Genau, hier, nee, wir sind äh wirJa, wir arbeiten alle zusammen. Wir hängen irgendwie alle äh äh helfen uns gegenseitig und und versuchen auch die die gegenseitig die Infrastruktur zu nutzen. Aber diese diese äh also sozusagen in Europa sind das wirklich zwei getrennte Organisationen, ESO und EsAaber wir haben eben ständig Kontakt und und viele meiner Kollegen haben entweder vorher bei der EsA gearbeitet und arbeiten jetzt bei der ESO oder haben vorher bei der ESO gearbeitet und arbeiten jetzt bei der wie ich zum Beispiel und und dadurch sind eben die Netzwerke sehr, sehr, sehr eng.
Tim Pritlove
Mhm. Gibt's auch so Missionen, die scheitern.
Markus Kissler-Patig
Ähm gibt es aber selten, weil eben dieser Planungsprozess so rigoros und so lang ist, dass ähm äh.Dass es oft äh also, dass es kaum zu Ausfällen kommt. Ähm wir sitzen hier aber gerade in einem Raum, wo so ein paar Exponate rumstehen ähm und äh eins da auf der Fensterbankein Teil der gecrashten Cluster Mission. Ähm das sind äh das ist eine Konstellation von vier Satelliten. Die wurden in Paaren äh hochgeschicktund 1 damals äheins dieser dieser Staats ist eben misslungen. Äh die Satelliten sind eben äh zurück auf die Erde gecrasht und äh ein Bruchteil davon sehen wir hier auf der Fensterbank, um uns dran zu erinnern, dass eben nicht alles immer klapptÄhm in dem Fall wurden die zwei Salzlitten aber wieder nachgebaut und diese Viererkonstellation fliegt tatsächlich seit,jetzt auch überdenken aber wahrscheinlich 15 Jahren oder soSie haben langsam ausgedient der Treibstoff geht uns aus und der erste von diesen vieren wird Ende 2024 wieder verglühen in der Erdatmosphäreund dann in zwei Jahren drauf, dann die weiteren drei. Ähm das ist eine Mission, die hier dies äh hauptsächlich ähm.Die das Strahlungsfeld der der Sonne in Erdnähe äh vermessen hat ähm und eben um äh um zu verstehen, wie die wie unsere Erde das Magnetfelder Erde mit der äh mit dem Sonnenwind interagiert.Aber das ist da war der erste Start der ist misslungen und wir hatten auch ein paar andere Missionen, Kooperationen mit teilweise auch anderen Weltraumagenturen.Ähmwo äh wo es kleine Fehler gab, ähm Hubbel hatte man ein ganz berühmtes Beispiel. Da wurde ja die Optik fast geschliffen und äh in den ersten Jahren hat man sich äh hat man das Leben bemerkt und musste dann an der eine Brille schleifen für die dann eingesetzt worden ist.Und die immer noch.
Tim Pritlove
Ist noch was zu retten.
Markus Kissler-Patig
Ja genau. Also meistens versuchen wir dieses Mission zu retten. Welche die richtig schief,gelaufen sind, das ist, glaube ich, das sind wirklich die Ausnahmen. Also ähm wie gesagt, der Prozess ist so rigoros, dass äh äh wir doch versuchen, normalerweise sehr äh vorsichtig mit den Steuergeldern umzugehen, ja.
Tim Pritlove
Ich denke, unterm Strich kann man auch mal sagen, dass eigentlich so die Zuverlässigkeit aller Missionen doch sehr hoch ist, also das meiste startet irgendwann, vielleicht verspätet, vielleicht ein bisschen teurer, aber dann fliegen sie und in allermeisten Fällen ähmsind ja dann auch die Ergebnisse ähm so wie ich das so wahrnehme über die Zeit.Eigentlich immer läuft immer alles länger als mal gedacht war und es kommt mir aber raus, als man sich erhofft hat. Das muss ja nicht unbedingt immer so.
Markus Kissler-Patig
Als ich gewählt habe, erwähnt habe, dass die unsere Ingenieure sehr konservativ sind. Also.
Tim Pritlove
Das hilft.
Markus Kissler-Patig
Genau, also das das hilft enorm. Das heißt, dass wenn man sagt, okay, das muss so mit neunundneunzig Kommaneun neun Prozent Sicherheit eben äh mindestens fünf Jahre lang funktionieren, dann ist eben die Wahrscheinlichkeit auch hoch, dass es eben auchzehn Jahre alt oder vielleicht sogar 20 Jahre hält oder wie in Pfaffen Herbert sogar 30 Jahre hält, obwohl es eben ursprünglich nur für fünf geplant war. Aber da baut man eben.Weil es auf Anhieb sofort und absolut sicher klappen muss, äh wird so viel Spielraum eingebaut, dass man dann, wenn man's will und und kann äh die Mission tatsächlich für sehr viel längere Zeit betreiben kann, wo wir uns dann eben immer sehr freuen als Wissenschaftler.
Tim Pritlove
Ja und oft ist es ja dann auch die Kreativität der äh missionsbegleitendenWissenschaftler und Ingenieure, die dann Winz dann mal gestartet ist und trotzdem fällt irgendetwas aus. Es gibt da mal so einen Vorfall zum Beispiel, hat man hier auch schon mal auf dem Anflugwo du ja dann auch noch sozusagen unterwegs äh die Strategie äh geändert, um ähm Dinge zu retten.
Markus Kissler-Patig
Es gibt extrem viele Beispiele, also ähm die Mission, die wir gerade erwähnt haben, Cluster, diese Konstellation von vier Satelliten, der hat natürlich eine Batterie eingebaut, denn die mitganz klassisch mit so Sonnensegeln eben oder Sonnenpanelen eben aufgeladen werden und so weiter. Die Batterien sind irgendwo mal ausgefallen und die Mission konnte trotzdem weiter,werden, weil man da eben dann äh kein Strom mehr gespeichert hat, sondern eben einfach,genutzt hat, von den äh Sonnenpanelen. Äh andere Beispiele sind äh sind. Man baut äh um dich für die Stabilisierung und Ausrichtung des äh eines Satelliten,baut man Jyros ein, also äh Spinnräder äh und äh man hat's geplant, mit viel zu betreiben, dann fiel eins aus, dann das nächste und das dritte und dann haben sie letztendlich festgestelltzerhabelt könnte man auch mit einem Spinnrad, äh also man hatte sechs eingebaut wegen Redulanzen. Man hat's immer geplant mit mindestens drei zu betreiben und vier eventuell. Und mittlerweile ist es mit zwei Betrieben und man weiß auch schon, wie man's mit allen betreiben könnte. Also,dieser Einbau der Resonanzen heißt, dass dass Sachen ausfallen können und wenn die das Leben trotzdem betreiben kann. Auch wieder dieses konservative DenkenAlso ich sage immer, konservativ, das ist vielleicht ein negativ behaftetes Wort, aber einfach dieses äh diese Planungssicherheit, die die Ingenieur einbauen, also diese.Tatsache, dass sie sich bewusst sind, dass auch wenn mal was schief läuft, eben daran nicht die komplette Mission scheitern darf. Ähm äh und dann eben diese Kreativität. Also wir haben Kollegen bei der E-Sock in Darmstadt, die ich immer wieder bewundere, weil die mit Ideen kommen, wenn mal was nicht funktioniert, wo auch was, was.Nicht so geplant wardann irgendeiner mit 'ner mit 'ner tollen Idee kommt wie man das dann trotzdem noch auspennen könnte oder ein anderes System an Bord das überhaupt nicht davor vorgesehen worden ist, benutzen kann um dann doch noch diese Funktion zu erfüllen und soalso die sind immer sehr kreativ und äh das macht ihnen auch Spaß und äh und uns hilft es, weil wir die Mission länger betreiben, betrieben werden können.
Tim Pritlove
Ja, jetzt im Dezember startet hoffentlich dann das äh James Web, das ist ja die Kooperation mit der NASA. Was ist so die die nächste reine ISA-Mission oder die federführend von der EsA geleitet wird, die dann hier äh äh starten wird.
Markus Kissler-Patig
Diese also diese Durchmusterung ähm um die die des äh entfernte Universum, also äh dunkle Materie, dunkle Energie eben zu durchmustern oder zu äh zur Katografieren im Universumdas startet Ende 22, Anfang 23 es ist so der Zeitraumda da hat man kein besonderes Zeitfenster, weil das eben 'ne Erdumlaufbahn istetwa um den selben zum selben Zeitpunkt starten wir auch im Juice, das ist unsere Jupiter, den ich erwähnt hatteweil man zum Jupiter fliegen muss und diese ganzen komplizierten äh zu anderen Planeten, haben diese Planetarischen Missionen äh oft einfach also ziemlich enge Zeitfenster, zu dem sie starten können und äh Ju.
Tim Pritlove
Ein, zwei Wochen oder so.
Markus Kissler-Patig
Genau und hat äh ein, zwei Wochen hat Juice jetzt äh im September zweiundzwanzig äh und dann nochmal ein Fenster im August dreiundzwanzig. Also wenn wir's äh können und schaffen, dann werden wir die September zweiundzwanzig startenwie wir das den Zeitraum verpassen müssen wir fast ein Jahr warten bis wir den nächsten, das nächste Zeitfenster haben um in die richtige Richtung zu fliegen und dann zum beim Jupiter anzukommen.Ähm das, also Jugendliche und Juice sind die zwei großen Missionen, die wir äh,die wird demnächst starten. Wir haben jetzt praktisch ein Start pro Jahr mit mit Web, mit Juice, mit. Das ist äh ungewöhnlich, aber wir freuen uns natürlich riesig, dass es passiert. Äh.
Tim Pritlove
Ungewöhnlich, dass es in diesem Abstand.
Markus Kissler-Patig
Ungewöhnlich, dass wir wirklich jedes Jahr eine größere Mission starten. Das ist äh äh das.Ja, das äh in der Regel haben wir das Geld nicht, um das zu schaffen. Da war jetzt Web hat sich verzögert, ähm nur kaum und dadurch haben wir jetzt so ein bisschen geballten.Und weil wir auch eben vor kurzem, du hast es erwähnt, äh Solar Orbitter zwanzigzwanzig eben auch schon hoch,haben und äh kurz vorher so eine kleinere Mission aber auch haben wir wieder viel äh viel zu betreiben.In der Regel betreiben wir etwa einen Dutzend äh Mission äh auf einmalund haben ein anderes Dutzend in der Planung, sodass es so praktisch unser Zyklus und das sind kleinere und größere und wenn man bedenkt, dass sie in 10 bis 20 Jahre brauchen, haben wir.Also dir in der Regel vielleicht eher einen einen Launch, alle zwei Jahre äh und eben nur, wenn's mal sich ein bisschen komprimiert, dann dann jedes Jahr.
Tim Pritlove
Ja, da wünsche ich auf jeden Fall äh viel Erfolg für die nächsten äh Missionen. Äh ich hab's natürlich auch schon oft angesprochen und ich spüre es auch immer wieder, jedes bei jedem Gespräch ähan dem Tag, wo so etwas startet, muss die Nervosität hier wirklich zum zum Schneiden sein, also das ähm kann man.
Markus Kissler-Patig
Es ist ähja ja das ist wirken sehr drauf. Die soll auch dabei irgendwie nachts um vier oder so und dann haben sich tatsächlich alle Mitarbeiter also wer wollte konnte eben herkommen. Wir haben Frühstück organisiert äh also nachts dann Frühstück äh und und der Raum warproposvoll, also da kommt dann äh das ist wirklich das sind die Events. Äh und wenn man's, wenn's geht natürlich, wir schicken kleine Teams dann immer auch zu den äh zu den Orten, wo diedie Lounge passieren. In der Regel für die in Koru, in ähm in Französisch.Wurde zum Beispiel von geschickt und,Das ist eben auch was, was schön ist bei der Eser. Wir haben Kollaboration mit allen anderen Weltraumagenturen. Was die anderen Weltraumagenturen unter sich eben kaum können, weilDie Amerikaner mit den Chinesen nicht können und die Russen wiederum nicht mit den Japanern oder sonst was. Und wir haben eben äh wirklich gute Kolorationen und und die Hälfte unserer Mission mindestens sind äh Kollaborationen zwischen diesen verschiedenen Agenturen. Das ist immer auch sehr spannend.
Tim Pritlove
Europa redet mit allen. Das ist gut, ja, ich auch. Vielen, vielen Dank für die Ausführung hier zu den zu den ganzen Operationen äh des E-Sak und äh wie das hier so ab.Einblicke. Ich.Einige der angesprochenen Missionen hier demnächst dann auch noch mit abdecken. Ja, aber bis dahin äh freue ich mich, wenn ihr auch weiterhin hier wieder äh zuhört und einschaltet und für heute sage ich dann äh tschüss und.

Shownotes